{"title":"Study for a Wall-Climbing Robot Magnetic Attraction Force of An Electronically Controlled Permanent Magnet","authors":"Xin Chen, Wuwei Feng, Yulian Zhang, Minglei Li, Shifei Wu","doi":"10.17762/converter.110","DOIUrl":null,"url":null,"abstract":"With the advancement in science and technology, a wall-climbing robot attached to the ship's outer surface is increasingly replacing humans in the rust removal. The magnetic force is not just the adsorption force but also the moving resistance force, which is currently the technological bottleneck in wall-climbing robotics based on magnetic adsorption. This paper proposes a novel wall-climbing robot based on electrically controlled permanent magnet technology to solve this problem. An electrically controlled permanent magnetic wall-climbing robot is proposed to realize the function of magnetization and demagnetization by changing the pulse current. The results of the experiments reveal that the magnetizing force is adequately adsorbed on the ship's outer surface. The magnetic attraction force is close to 0 N during demagnetization, meaning that the system is fully unloaded, as predicted by the theoretical analysis.","PeriodicalId":10707,"journal":{"name":"CONVERTER","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CONVERTER","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/converter.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement in science and technology, a wall-climbing robot attached to the ship's outer surface is increasingly replacing humans in the rust removal. The magnetic force is not just the adsorption force but also the moving resistance force, which is currently the technological bottleneck in wall-climbing robotics based on magnetic adsorption. This paper proposes a novel wall-climbing robot based on electrically controlled permanent magnet technology to solve this problem. An electrically controlled permanent magnetic wall-climbing robot is proposed to realize the function of magnetization and demagnetization by changing the pulse current. The results of the experiments reveal that the magnetizing force is adequately adsorbed on the ship's outer surface. The magnetic attraction force is close to 0 N during demagnetization, meaning that the system is fully unloaded, as predicted by the theoretical analysis.