{"title":"Multi-level equilibrium signaling for molecular communication","authors":"B. C. Akdeniz, Malcolm Egan","doi":"10.1145/3411295.3411318","DOIUrl":null,"url":null,"abstract":"Two key challenges in diffusion-based molecular communication are low data rates and accounting for the geometry of the fluid medium in the form of obstacles and the boundary. To reduce the need for the receiver to have knowledge of the geometry of the medium, binary equilibrium signaling has recently been proposed for molecular communication with a passive receiver in bounded channels. In this approach, reversible chemical reactions are introduced at the transmitter and the receiver in order for the system to converge to a known equilibrium state. This provides a means of designing simple detection rules that only depend on the transmitted signal and the volume of the bounded fluid medium. In this paper, we introduce multi-level equilibrium signaling, which allows for higher data rates via higher order modulation. We show that for a wide range of conditions, with appropriate receiver optimization, multi-level equilibrium signaling can outperform conventional concentration shift keying schemes. As such, our approach provides a basis to improve data rates in molecular communications without the need to increase the complexity of the system by exploiting techniques such as multiple information-carrying molecules.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Two key challenges in diffusion-based molecular communication are low data rates and accounting for the geometry of the fluid medium in the form of obstacles and the boundary. To reduce the need for the receiver to have knowledge of the geometry of the medium, binary equilibrium signaling has recently been proposed for molecular communication with a passive receiver in bounded channels. In this approach, reversible chemical reactions are introduced at the transmitter and the receiver in order for the system to converge to a known equilibrium state. This provides a means of designing simple detection rules that only depend on the transmitted signal and the volume of the bounded fluid medium. In this paper, we introduce multi-level equilibrium signaling, which allows for higher data rates via higher order modulation. We show that for a wide range of conditions, with appropriate receiver optimization, multi-level equilibrium signaling can outperform conventional concentration shift keying schemes. As such, our approach provides a basis to improve data rates in molecular communications without the need to increase the complexity of the system by exploiting techniques such as multiple information-carrying molecules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子通信的多级平衡信号
基于扩散的分子通信的两个关键挑战是低数据速率和以障碍物和边界形式计算流体介质的几何形状。为了减少接收器对介质几何知识的需求,最近提出了在有界通道中与被动接收器进行分子通信的二元平衡信号。在这种方法中,为了使系统收敛到已知的平衡状态,在发送端和接收端引入了可逆的化学反应。这提供了一种设计简单的检测规则的方法,该规则仅依赖于传输的信号和有界流体介质的体积。在本文中,我们引入了多级平衡信令,它允许通过高阶调制获得更高的数据速率。我们表明,在广泛的条件下,通过适当的接收器优化,多级平衡信令可以优于传统的集中移位键控方案。因此,我们的方法为提高分子通信的数据速率提供了基础,而不需要通过利用多种携带信息的分子等技术来增加系统的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward localization in terahertz-operating energy harvesting software-defined metamaterials: context analysis MEHLISSA A molecular communications framework for understanding the floral transition Powering next-generation industry 4.0 by a self-learning and low-power neuromorphic system A testbed and simulation framework for air-based molecular communication using fluorescein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1