A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates

Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi
{"title":"A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates","authors":"Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi","doi":"10.48550/arXiv.2206.10189","DOIUrl":null,"url":null,"abstract":"We propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FedAvg aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and FedBuff. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. We empirically demonstrate our theory on a series of experiments showing that asynchronous FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate the improvements of FedFix over synchronous and asynchronous FedAvg.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"1 1","pages":"110:1-110:43"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.10189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FedAvg aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and FedBuff. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. We empirically demonstrate our theory on a series of experiments showing that asynchronous FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate the improvements of FedFix over synchronous and asynchronous FedAvg.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异步和异构客户端更新联邦优化的一般理论
我们提出了一个新的框架来研究具有梯度更新延迟的异步联邦学习优化。我们的理论框架扩展了标准fedag聚合方案,引入随机聚合权重来表示客户机更新时间的可变性,例如由于异构硬件功能。我们的形式化方法适用于一般的联邦设置,其中客户端具有异构数据集并执行至少一步的随机梯度下降(SGD)。证明了该方案的收敛性,并给出了相关最小值为联邦问题最优的充分条件。我们展示了我们的通用框架适用于现有的优化方案,包括集中式学习、fedag、异步fedag和FedBuff。这里提供的理论为在异构条件下设计联邦学习实验提供了有意义的指导。特别地,我们在这项工作中开发了FedFix,它是fedag的一个新扩展,在保持同步聚合的收敛稳定性的同时,实现了高效的异步联邦训练。我们通过一系列实验证明了我们的理论,表明异步fedag以牺牲稳定性为代价导致快速收敛,并且我们最终证明了FedFix相对于同步和异步fedag的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1