Enhancing Bandwidth Utilization of IP Telephony Over IPv6 Networks

IF 2.2 4区 计算机科学 Q2 Computer Science Computer Systems Science and Engineering Pub Date : 2023-01-01 DOI:10.32604/csse.2023.024338
Hani Al-Mimi, Yousef Alrabanah, Mosleh M. Abu-Alhaj, Sumaya N. Al-Khatib
{"title":"Enhancing Bandwidth Utilization of IP Telephony Over IPv6 Networks","authors":"Hani Al-Mimi, Yousef Alrabanah, Mosleh M. Abu-Alhaj, Sumaya N. Al-Khatib","doi":"10.32604/csse.2023.024338","DOIUrl":null,"url":null,"abstract":"The demand for the telecommunication services, such as IP telephony, has increased dramatically during the COVID-19 pandemic lockdown. IP telephony should be enhanced to provide the expected quality. One of the issues that should be investigated in IP telephony is bandwidth utilization. IP telephony produces very small speech samples attached to a large packet header. The header of the IP telephony consumes a considerable share of the bandwidth allotted to the IP telephony. This wastes the network's bandwidth and influences the IP telephony quality. This paper proposes a mechanism (called Smallerize) that reduces the bandwidth consumed by both the speech sample and the header. This is achieved by assembling numerous IP telephony packets in one header and use the header's fields to carry the speech sample. Several metrics have been used to measure the achievement Smallerize mechanism. The number of calls has been increased by 245.1% compared to the typical mechanism. The bandwidth saving has also reached 68% with the G.28 codec. Therefore, Smallerize is a possible mechanism to enhance bandwidth utilization of the IP telephony.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"49 1","pages":"1039-1049"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Systems Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/csse.2023.024338","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

The demand for the telecommunication services, such as IP telephony, has increased dramatically during the COVID-19 pandemic lockdown. IP telephony should be enhanced to provide the expected quality. One of the issues that should be investigated in IP telephony is bandwidth utilization. IP telephony produces very small speech samples attached to a large packet header. The header of the IP telephony consumes a considerable share of the bandwidth allotted to the IP telephony. This wastes the network's bandwidth and influences the IP telephony quality. This paper proposes a mechanism (called Smallerize) that reduces the bandwidth consumed by both the speech sample and the header. This is achieved by assembling numerous IP telephony packets in one header and use the header's fields to carry the speech sample. Several metrics have been used to measure the achievement Smallerize mechanism. The number of calls has been increased by 245.1% compared to the typical mechanism. The bandwidth saving has also reached 68% with the G.28 codec. Therefore, Smallerize is a possible mechanism to enhance bandwidth utilization of the IP telephony.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高IPv6网络上IP电话的带宽利用率
在COVID-19大流行封锁期间,对IP电话等电信服务的需求急剧增加。IP电话应得到加强,以提供预期的质量。在IP电话中需要研究的问题之一是带宽利用率。IP电话产生非常小的语音样本,附加到一个大的数据包头。IP电话的报头占用了分配给IP电话的相当一部分带宽。这会浪费网络带宽,影响IP通话质量。本文提出了一种机制(称为Smallerize),可以减少语音样本和报头所消耗的带宽。这是通过在一个报头中组装许多IP电话数据包并使用报头的字段来携带语音样本来实现的。有几个指标被用来衡量Smallerize机制的成就。与典型机制相比,调用次数增加了245.1%。使用G.28编解码器,带宽节省也达到68%。因此,小型化是提高IP电话带宽利用率的一种可能的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Systems Science and Engineering
Computer Systems Science and Engineering 工程技术-计算机:理论方法
CiteScore
3.10
自引率
13.60%
发文量
308
审稿时长
>12 weeks
期刊介绍: The journal is devoted to the publication of high quality papers on theoretical developments in computer systems science, and their applications in computer systems engineering. Original research papers, state-of-the-art reviews and technical notes are invited for publication. All papers will be refereed by acknowledged experts in the field, and may be (i) accepted without change, (ii) require amendment and subsequent re-refereeing, or (iii) be rejected on the grounds of either relevance or content. The submission of a paper implies that, if accepted for publication, it will not be published elsewhere in the same form, in any language, without the prior consent of the Publisher.
期刊最新文献
Faster RCNN Target Detection Algorithm Integrating CBAM and FPN SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition. WACPN: A Neural Network for Pneumonia Diagnosis. A Lightweight Driver Drowsiness Detection System Using 3DCNN With LSTM Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1