Perspective hierarchical dirichlet process for user-tagged image modeling

Xin Chen, Xiaohua Hu, Yuan An, Zunyan Xiong, Tingting He, Eun Kyo Park
{"title":"Perspective hierarchical dirichlet process for user-tagged image modeling","authors":"Xin Chen, Xiaohua Hu, Yuan An, Zunyan Xiong, Tingting He, Eun Kyo Park","doi":"10.1145/2063576.2063770","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a perspective Hierarchical Dirichlet Process (pHDP) model to deal with user-tagged image modeling. The contribution is two-fold. Firstly, we associate image features with image tags. Secondly, we incorporate the user's perspectives into the image tag generation process and introduce new latent variables to determine if an image tag is generated from user's perspectives or from the image content. Therefore, the model is able to extract both embedded semantic components and user's perspectives from user-tagged images. Based on the proposed pHDP model, we achieve automatic image tagging with users' perspective. Experimental results show that the pHDP model achieves better image tagging performance compared to state-of-the-art topic models.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"7 1","pages":"1341-1346"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we proposed a perspective Hierarchical Dirichlet Process (pHDP) model to deal with user-tagged image modeling. The contribution is two-fold. Firstly, we associate image features with image tags. Secondly, we incorporate the user's perspectives into the image tag generation process and introduce new latent variables to determine if an image tag is generated from user's perspectives or from the image content. Therefore, the model is able to extract both embedded semantic components and user's perspectives from user-tagged images. Based on the proposed pHDP model, we achieve automatic image tagging with users' perspective. Experimental results show that the pHDP model achieves better image tagging performance compared to state-of-the-art topic models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用户标记图像建模的透视层次狄利克雷过程
在本文中,我们提出了一个透视层次狄利克雷过程(pHDP)模型来处理用户标记图像建模。这种贡献是双重的。首先,我们将图像特征与图像标签相关联。其次,我们将用户视角纳入图像标签生成过程,并引入新的潜在变量来确定图像标签是从用户视角生成还是从图像内容生成。因此,该模型能够从用户标记的图像中提取嵌入的语义组件和用户的视角。基于提出的pHDP模型,实现了基于用户视角的图像自动标注。实验结果表明,与目前最先进的主题模型相比,pHDP模型具有更好的图像标记性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Backdoor in Seconds: Unlocking Vulnerabilities in Large Pre-trained Models via Model Editing. MUSE: A Multi-slice Joint Analysis Method for Spatial Transcriptomics Experiments. scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data. iMIRACLE: an Iterative Multi-View Graph Neural Network to Model Intercellular Gene Regulation from Spatial Transcriptomic Data. HypMix: Hyperbolic Representation Learning for Graphs with Mixed Hierarchical and Non-hierarchical Structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1