Potential of Ecological Benefits for the Continuous Flow Intersection

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Promet-Traffic & Transportation Pub Date : 2023-02-13 DOI:10.7307/ptt.v35i1.20
Na Wu, Yating Liu
{"title":"Potential of Ecological Benefits for the Continuous Flow Intersection","authors":"Na Wu, Yating Liu","doi":"10.7307/ptt.v35i1.20","DOIUrl":null,"url":null,"abstract":"Energy conservation and emission reduction from the transportation sector are of great significance in coping with the global energy and environmental crisis. As the bottleneck of urban road traffic, intersection burdens the urban environment greatly. When the volume of left-turn traffic is large, the continuous flow intersection (CFI) can effectively improve intersection operation efficiency. This paper first put forward the definition and application conditions of CFI. Then its mechanism for energy saving and emission reduction was analysed. CFI transformation was designed taking a typical intersection in Xi’an as an example. Operating efficiency, energy consumption and emissions of the intersection before and after CFI transformation were evaluated using the VISSIM model. The  results show that energy consumption and emissions in the intersection are greatly reduced after CFI transformation. Queue length is reduced by more than 41%. Energy consumption and pollutant emission are reduced by about 8%. Through the simulation analysis, the emission reduction benefits most when the volume of left-turn traffic is 80%–85% of the design capacity, and the ratio of leftturntraffic over through traffic is maintained between 50% and 100%. This study suggests that CFI is suitable for large-scale promotion with careful examination.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v35i1.20","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy conservation and emission reduction from the transportation sector are of great significance in coping with the global energy and environmental crisis. As the bottleneck of urban road traffic, intersection burdens the urban environment greatly. When the volume of left-turn traffic is large, the continuous flow intersection (CFI) can effectively improve intersection operation efficiency. This paper first put forward the definition and application conditions of CFI. Then its mechanism for energy saving and emission reduction was analysed. CFI transformation was designed taking a typical intersection in Xi’an as an example. Operating efficiency, energy consumption and emissions of the intersection before and after CFI transformation were evaluated using the VISSIM model. The  results show that energy consumption and emissions in the intersection are greatly reduced after CFI transformation. Queue length is reduced by more than 41%. Energy consumption and pollutant emission are reduced by about 8%. Through the simulation analysis, the emission reduction benefits most when the volume of left-turn traffic is 80%–85% of the design capacity, and the ratio of leftturntraffic over through traffic is maintained between 50% and 100%. This study suggests that CFI is suitable for large-scale promotion with careful examination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续流交叉口的生态效益潜力
交通运输领域的节能减排对于应对全球能源和环境危机具有重要意义。交叉口作为城市道路交通的瓶颈,给城市环境带来了巨大的负担。当左转交通量较大时,连续流交叉口(CFI)可以有效提高交叉口运行效率。本文首先提出了CFI的定义和应用条件。并对其节能减排机理进行了分析。以西安市某典型十字路口为例,进行了CFI改造设计。采用VISSIM模型对CFI改造前后交叉口的运行效率、能耗和排放进行评价。结果表明,CFI改造后的交叉口能耗和排放都大大降低。队列长度减少了41%以上。能耗和污染物排放降低8%左右。通过仿真分析,当左转弯交通量为设计通行能力的80% ~ 85%,左转弯交通量通过交通量的比例保持在50% ~ 100%时,减排效益最大。本研究表明,CFI适合大规模推广,但需仔细检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
期刊最新文献
Selecting the Flexible Last-Mile Delivery Models Using Multicriteria Decision-Making Passenger Queuing Analysis Method of Security Inspection and Ticket-Checking Area without Archway Metal Detector in Metro Stations Environmental Sustainability and Freight Transport Performance in the EU – An Autoregressive Conditional Heteroscedasticity (ARCH) Model Analysis Use of Structural Equation Modelling and Neural Network to Analyse Shared Parking Choice Behaviour Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1