K. Ali, H. Ohgaki, H. Zen, T. Kii, T. Hayakawa, T. Shizuma, H. Toyokawa, Y. Taira, M. Fujimoto, M. Katoh
{"title":"Experimental Study on 3-D Isotope-Selective CT Imaging Based on Nuclear Resonance Fluorescence Transmission Method","authors":"K. Ali, H. Ohgaki, H. Zen, T. Kii, T. Hayakawa, T. Shizuma, H. Toyokawa, Y. Taira, M. Fujimoto, M. Katoh","doi":"10.1109/NSS/MIC42677.2020.9507895","DOIUrl":null,"url":null,"abstract":"We proposed an isotope-selective computed tomography (CT) imaging based on the Nuclear Resonance Fluorescence (NRF) transmission method using a quasi-monochromatic laser Compton scattering (LCS) gamma-ray beam in the MeV region for nuclear safety applications. As the first step, a two-dimensional (2D) NRF-CT image of 208Pb isotope distribution was selectively obtained for the sample target containing two enriched lead isotope rods (206Pb and 208Pb). We are planning to perform an experiment to obtain a three-dimensional NRF Computed Tomography (3D NRF-CT) image for the specific isotope. An automatic measurement system has been developed. As the result, we obtained an excellent quality of 3D gamma-ray CT image.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"20 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9507895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We proposed an isotope-selective computed tomography (CT) imaging based on the Nuclear Resonance Fluorescence (NRF) transmission method using a quasi-monochromatic laser Compton scattering (LCS) gamma-ray beam in the MeV region for nuclear safety applications. As the first step, a two-dimensional (2D) NRF-CT image of 208Pb isotope distribution was selectively obtained for the sample target containing two enriched lead isotope rods (206Pb and 208Pb). We are planning to perform an experiment to obtain a three-dimensional NRF Computed Tomography (3D NRF-CT) image for the specific isotope. An automatic measurement system has been developed. As the result, we obtained an excellent quality of 3D gamma-ray CT image.