MC-OCR Challenge 2021: An end-to-end recognition framework for Vietnamese Receipts

Hung Le, H. To, Hung An, Khanh Ho, K. Nguyen, Thua Nguyen, Tien Do, T. Ngo, Duy-Dinh Le
{"title":"MC-OCR Challenge 2021: An end-to-end recognition framework for Vietnamese Receipts","authors":"Hung Le, H. To, Hung An, Khanh Ho, K. Nguyen, Thua Nguyen, Tien Do, T. Ngo, Duy-Dinh Le","doi":"10.1109/RIVF51545.2021.9642121","DOIUrl":null,"url":null,"abstract":"Recognizing text from receipts is a significant step in automating office processes for many fields such as finance and accounting. MC-OCR Challenge has formed this problem into two tasks (1) evaluating the quality, and (2) recognizing required fields of the captured receipt. Our proposed framework is based on three key components: preprocessing with receipt detection using Faster R-CNN, alignment based on the angle and direction of rotation; estimate the receipt image quality score in task 1 using EfficientNet-B4 which has been retrained using transfer learning; while PAN is for text detection and VietOCR1 for text recognition. In the final round, our systems have achieved the best result in task 1 (0.1 RMSE) and a comparable result with other teams (0.3 CER) in task 2 which demonstrated the effectiveness of the proposed method.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"6 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recognizing text from receipts is a significant step in automating office processes for many fields such as finance and accounting. MC-OCR Challenge has formed this problem into two tasks (1) evaluating the quality, and (2) recognizing required fields of the captured receipt. Our proposed framework is based on three key components: preprocessing with receipt detection using Faster R-CNN, alignment based on the angle and direction of rotation; estimate the receipt image quality score in task 1 using EfficientNet-B4 which has been retrained using transfer learning; while PAN is for text detection and VietOCR1 for text recognition. In the final round, our systems have achieved the best result in task 1 (0.1 RMSE) and a comparable result with other teams (0.3 CER) in task 2 which demonstrated the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MC-OCR挑战2021:越南收据的端到端识别框架
从收据中识别文本是许多领域自动化办公流程的重要一步,例如财务和会计。MC-OCR Challenge将该问题分为两个任务(1)评估质量,(2)识别捕获收据的必要字段。我们提出的框架基于三个关键组件:使用Faster R-CNN进行接收检测的预处理,基于旋转角度和方向的对齐;在任务1中,使用经过迁移学习再训练的EfficientNet-B4估计接收图像质量分数;而PAN用于文本检测,VietOCR1用于文本识别。在最后一轮中,我们的系统在任务1中取得了最好的结果(0.1 RMSE),并在任务2中与其他团队取得了相当的结果(0.3 CER),这证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1