A global analysis of coastal flood risk to the petrochemical distribution network in a changing climate

Kendall M. Capshaw, Jamie E. Padgett
{"title":"A global analysis of coastal flood risk to the petrochemical distribution network in a changing climate","authors":"Kendall M. Capshaw,&nbsp;Jamie E. Padgett","doi":"10.1016/j.rcns.2022.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>The global petroleum distribution network already faces a significant threat of disruption due to annual coastal flooding of major refining centers, which is expected to further increase with the effects of climate change. This study considers the impacts that sea level rise projections might have on the annual flood risk to coastal refineries, and how regional disruptions propagate across the network. Both the annual regional risk in terms of expected production disruption under a range of climate scenarios, as well as the expected production disruption due to a major flood event impacting refining hubs of high importance are assessed throughout the 21<sup>st</sup> century. These risks are propagated across the network to model the global impact of coastal flood-induced refining disruptions. This analysis provides insights on the relative risks that different climate scenarios and flood events pose globally, informing potential mitigation and adaptation needs of critical facilities. Due to the highly interconnected nature of the global petroleum product distribution network, these results highlight the need for mitigation considerations for even regions with low domestic production disruption risk due to coastal flood hazards, as disruptions in remote regions can have cascading consequences resulting in significant disruption to petroleum product supply around the world. Furthermore, such results can inform decisions regarding technology transitions or energy diversification in light of the new understanding of climate risks to coastal refineries and the global petroleum distribution network.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"1 3","pages":"Pages 52-60"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741622000308/pdfft?md5=4b904d388ad94526ddc96b9225ad7399&pid=1-s2.0-S2772741622000308-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741622000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The global petroleum distribution network already faces a significant threat of disruption due to annual coastal flooding of major refining centers, which is expected to further increase with the effects of climate change. This study considers the impacts that sea level rise projections might have on the annual flood risk to coastal refineries, and how regional disruptions propagate across the network. Both the annual regional risk in terms of expected production disruption under a range of climate scenarios, as well as the expected production disruption due to a major flood event impacting refining hubs of high importance are assessed throughout the 21st century. These risks are propagated across the network to model the global impact of coastal flood-induced refining disruptions. This analysis provides insights on the relative risks that different climate scenarios and flood events pose globally, informing potential mitigation and adaptation needs of critical facilities. Due to the highly interconnected nature of the global petroleum product distribution network, these results highlight the need for mitigation considerations for even regions with low domestic production disruption risk due to coastal flood hazards, as disruptions in remote regions can have cascading consequences resulting in significant disruption to petroleum product supply around the world. Furthermore, such results can inform decisions regarding technology transitions or energy diversification in light of the new understanding of climate risks to coastal refineries and the global petroleum distribution network.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化下沿海洪水对石化配电网的全球风险分析
由于主要炼油中心每年都会被沿海地区淹没,全球石油分销网络已经面临着严重的中断威胁,而气候变化的影响预计还会进一步加剧。本研究考虑了海平面上升预测可能对沿海炼油厂的年度洪水风险产生的影响,以及区域破坏如何在整个网络中传播。在21世纪,评估了一系列气候情景下预期生产中断的年度区域风险,以及由于影响重要炼油中心的重大洪水事件导致的预期生产中断。这些风险在整个网络中传播,以模拟沿海洪水导致的炼油中断对全球的影响。这一分析提供了对不同气候情景和洪水事件在全球造成的相对风险的见解,为关键设施的潜在缓解和适应需求提供了信息。由于全球石油产品分销网络具有高度相互关联的性质,这些结果突出表明,即使是沿海洪水灾害导致国内生产中断风险较低的地区,也需要考虑缓解问题,因为偏远地区的中断可能产生连锁后果,导致全球石油产品供应严重中断。此外,根据对沿海炼油厂和全球石油分销网络的气候风险的新认识,这些结果可以为有关技术转型或能源多样化的决策提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Automated knowledge graphs for complex systems (AutoGraCS): Applications to management of bridge networks Uncovering implicit Seismogenic associated regions towards promoting urban resilience Building Stock and Emission Models for Jakarta Key networks to create disaster resilient Smart Cities Mission: A case for remodeling India's Smart Cities Mission to include disaster resilience Landslide-oriented disaster resilience evaluation in mountainous cities: A case study in Chongqing, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1