{"title":"Course Scheduling Under Sudden Scarcity: Applications to Pandemic Planning","authors":"C. Barnhart, D. Bertsimas, A. Delarue, Julia Yan","doi":"10.1287/msom.2021.0996","DOIUrl":null,"url":null,"abstract":"Problem definition: Physical distancing requirements during the COVID-19 pandemic have dramatically reduced the effective capacity of university campuses. Under these conditions, we examine how to make the most of newly scarce resources in the related problems of curriculum planning and course timetabling. Academic/practical relevance: We propose a unified model for university course scheduling problems under a two-stage framework and draw parallels between component problems while showing how to accommodate individual specifics. During the pandemic, our models were critical to measuring the impact of several innovative proposals, including expanding the academic calendar, teaching across multiple rooms, and rotating student attendance through the week and school year. Methodology: We use integer optimization combined with enrollment data from thousands of past students. Our models scale to thousands of individual students enrolled in hundreds of courses. Results: We projected that if Massachusetts Institute of Technology moved from its usual two-semester calendar to a three-semester calendar, with each student attending two semesters in person, more than 90% of student course demand could be satisfied on campus without increasing faculty workloads. For the Sloan School of Management, we produced a new schedule that was implemented in fall 2020. The schedule allowed half of Sloan courses to include an in-person component while adhering to safety guidelines. Despite a fourfold reduction in classroom capacity, it afforded two thirds of Sloan students the opportunity for in-person learning in at least half their courses. Managerial implications: Integer optimization can enable decision making at a large scale in a domain that is usually managed manually by university administrators. Our models, although inspired by the pandemic, are generic and could apply to any scheduling problem under severe capacity constraints.","PeriodicalId":18108,"journal":{"name":"Manuf. Serv. Oper. Manag.","volume":"33 1","pages":"727-745"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuf. Serv. Oper. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/msom.2021.0996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Problem definition: Physical distancing requirements during the COVID-19 pandemic have dramatically reduced the effective capacity of university campuses. Under these conditions, we examine how to make the most of newly scarce resources in the related problems of curriculum planning and course timetabling. Academic/practical relevance: We propose a unified model for university course scheduling problems under a two-stage framework and draw parallels between component problems while showing how to accommodate individual specifics. During the pandemic, our models were critical to measuring the impact of several innovative proposals, including expanding the academic calendar, teaching across multiple rooms, and rotating student attendance through the week and school year. Methodology: We use integer optimization combined with enrollment data from thousands of past students. Our models scale to thousands of individual students enrolled in hundreds of courses. Results: We projected that if Massachusetts Institute of Technology moved from its usual two-semester calendar to a three-semester calendar, with each student attending two semesters in person, more than 90% of student course demand could be satisfied on campus without increasing faculty workloads. For the Sloan School of Management, we produced a new schedule that was implemented in fall 2020. The schedule allowed half of Sloan courses to include an in-person component while adhering to safety guidelines. Despite a fourfold reduction in classroom capacity, it afforded two thirds of Sloan students the opportunity for in-person learning in at least half their courses. Managerial implications: Integer optimization can enable decision making at a large scale in a domain that is usually managed manually by university administrators. Our models, although inspired by the pandemic, are generic and could apply to any scheduling problem under severe capacity constraints.