Minimally capturing heterogeneous complier effect of endogenous treatment for any outcome variable

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Causal Inference Pub Date : 2023-01-01 DOI:10.1515/jci-2022-0036
Goeun Lee, Jin‐young Choi, Myoung‐jae Lee
{"title":"Minimally capturing heterogeneous complier effect of endogenous treatment for any outcome variable","authors":"Goeun Lee, Jin‐young Choi, Myoung‐jae Lee","doi":"10.1515/jci-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract When a binary treatment D D is possibly endogenous, a binary instrument δ \\delta is often used to identify the “effect on compliers.” If covariates X X affect both D D and an outcome Y Y , X X should be controlled to identify the “ X X -conditional complier effect.” However, its nonparametric estimation leads to the well-known dimension problem. To avoid this problem while capturing the effect heterogeneity, we identify the complier effect heterogeneous with respect to only the one-dimensional “instrument score” E ( δ ∣ X ) E\\left(\\delta | X) for non-randomized δ \\delta . This effect heterogeneity is minimal, in the sense that any other “balancing score” is finer than the instrument score. We establish two critical “reduced-form models” that are linear in D D or δ \\delta , even though no parametric assumption is imposed. The models hold for any form of Y Y (continuous, binary, count, …). The desired effect is then estimated using either single index model estimators or an instrumental variable estimator after applying a power approximation to the effect. Simulation and empirical studies are performed to illustrate the proposed approaches.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"8 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2022-0036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract When a binary treatment D D is possibly endogenous, a binary instrument δ \delta is often used to identify the “effect on compliers.” If covariates X X affect both D D and an outcome Y Y , X X should be controlled to identify the “ X X -conditional complier effect.” However, its nonparametric estimation leads to the well-known dimension problem. To avoid this problem while capturing the effect heterogeneity, we identify the complier effect heterogeneous with respect to only the one-dimensional “instrument score” E ( δ ∣ X ) E\left(\delta | X) for non-randomized δ \delta . This effect heterogeneity is minimal, in the sense that any other “balancing score” is finer than the instrument score. We establish two critical “reduced-form models” that are linear in D D or δ \delta , even though no parametric assumption is imposed. The models hold for any form of Y Y (continuous, binary, count, …). The desired effect is then estimated using either single index model estimators or an instrumental variable estimator after applying a power approximation to the effect. Simulation and empirical studies are performed to illustrate the proposed approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小限度地捕获内源性治疗对任何结果变量的异质编译效应
当二元治疗D D可能是内源性的,通常使用二元仪器δ \delta来识别“对编译器的影响”。如果协变量X X同时影响D D和结果Y Y,则应该控制X X以识别“X X -条件编译器效应”。然而,它的非参数估计导致了众所周知的维数问题。为了在捕获效应异质性的同时避免这一问题,我们仅针对非随机δ \delta的一维“工具评分”E (δ∣X) E \left (\delta | X)识别编译器效应的异质性。这种效应异质性是最小的,因为任何其他“平衡分数”都比乐器分数好。我们建立了两个临界的“简化形式模型”,它们在D D或δ \delta中是线性的,即使没有施加参数假设。这些模型适用于任何形式的Y Y(连续的、二进制的、计数的……)。然后使用单指标模型估计器或在对效果应用功率近似后使用工具变量估计器估计所需的效果。通过仿真和实证研究来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
期刊最新文献
Evaluating Boolean relationships in Configurational Comparative Methods Comparison of open-source software for producing directed acyclic graphs. LINGUISTIC FEATURES AND PRESENTATION OF MATERIALS ON ENGLISH TEXTBOOK “WHEN ENGLISH RINGS A BELL” BASED ON BSNP Heterogeneous interventional effects with multiple mediators: Semiparametric and nonparametric approaches Attributable fraction and related measures: Conceptual relations in the counterfactual framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1