Depth judgment measures and occluding surfaces in near-field augmented reality

Gurjot Singh, J. Edward Swan, J. Adam Jones, Stephen R. Ellis
{"title":"Depth judgment measures and occluding surfaces in near-field augmented reality","authors":"Gurjot Singh, J. Edward Swan, J. Adam Jones, Stephen R. Ellis","doi":"10.1145/1836248.1836277","DOIUrl":null,"url":null,"abstract":"In this paper we describe an apparatus and experiment that measured depth judgments in augmented reality at near-field distances of 34 to 50 centimeters. The experiment compared perceptual matching, a closed-loop task for measuring depth judgments, with blind reaching, a visually open-loop task for measuring depth judgments. The experiment also studied the effect of a highly salient occluding surface appearing behind, coincident with, and in front of a virtual object. The apparatus and closed-loop matching task were based on previous work by Ellis and Menges. The experiment found maximum average depth judgment errors of 5.5 cm, and found that the blind reaching judgments were less accurate than the perceptual matching judgments. The experiment found that the presence of a highly-salient occluding surface has a complicated effect on depth judgments, but does not lead to systematically larger or smaller errors.","PeriodicalId":89458,"journal":{"name":"Proceedings APGV : ... Symposium on Applied Perception in Graphics and Visualization. Symposium on Applied Perception in Graphics and Visualization","volume":"87 1","pages":"149-156"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings APGV : ... Symposium on Applied Perception in Graphics and Visualization. Symposium on Applied Perception in Graphics and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1836248.1836277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

In this paper we describe an apparatus and experiment that measured depth judgments in augmented reality at near-field distances of 34 to 50 centimeters. The experiment compared perceptual matching, a closed-loop task for measuring depth judgments, with blind reaching, a visually open-loop task for measuring depth judgments. The experiment also studied the effect of a highly salient occluding surface appearing behind, coincident with, and in front of a virtual object. The apparatus and closed-loop matching task were based on previous work by Ellis and Menges. The experiment found maximum average depth judgment errors of 5.5 cm, and found that the blind reaching judgments were less accurate than the perceptual matching judgments. The experiment found that the presence of a highly-salient occluding surface has a complicated effect on depth judgments, but does not lead to systematically larger or smaller errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近场增强现实中的深度判断方法和遮挡面
本文描述了一种在近场距离34 ~ 50厘米的增强现实中测量深度判断的装置和实验。实验比较了深度判断的闭环任务感知匹配和视觉开环任务盲取。实验还研究了一个高度突出的遮挡面出现在虚拟物体的后面、同时和前面的效果。该装置和闭环匹配任务是基于Ellis和Menges之前的工作。实验发现最大平均深度判断误差为5.5 cm,并且发现盲目到达判断的准确性低于感知匹配判断。实验发现,高度突出的遮挡面对深度判断有复杂的影响,但不会导致系统的较大或较小的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of field of view calibration techniques for head-mounted displays Gaze-contingent real-time video processing to study natural vision Realistic simulation of human contrast perception after headlight glares in driving simulations Spatial localization with only auditory cues: a preliminary study Measuring gaze depth with an eye tracker during stereoscopic display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1