Resonant Inductive Coupling for Wireless Power Transmission

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Power and Energy Systems Pub Date : 2022-03-18 DOI:10.54616/ijeps/20220301
P. Athira, Tze-Zhang Ang, Mohamed Salem
{"title":"Resonant Inductive Coupling for Wireless Power Transmission","authors":"P. Athira, Tze-Zhang Ang, Mohamed Salem","doi":"10.54616/ijeps/20220301","DOIUrl":null,"url":null,"abstract":"Wireless power transmission (WPT) is the method that transferring electrical energy from power source to electrical without any physical contact and it can be used to transfer power to electricity dependent systems or devices. In WPT, electromagnetic energy is produced to transmit the energy from power source (transmitter) to the load (receiver) via resonant inductive coupling. This article focuses on the design of a resonant inductive coupling using parallel-T topology in coupling WTR and combined of single transmitter with multiple receivers. In addition, principle of magnetic wave between the transmitter and receiver with related parameters is utilized to develop in WPT. A parallel-T topology that consists of T-matching network for secondary side is proposed as it is more suitable for weak coupling wireless power transfer applications. Besides that, three circuits are designed to show the resonant inductive coupling for WTP which including the circuit with and without matching network and the circuit of single transmitter with multiple receivers. The simulation of output voltage and output current are observed to relate the effects of frequency on the circuit. The graph of output voltage and power are plotted to show the pattern on effect of the frequencies to the resonant inductive coupling circuit.","PeriodicalId":43153,"journal":{"name":"International Journal of Power and Energy Systems","volume":"38 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54616/ijeps/20220301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless power transmission (WPT) is the method that transferring electrical energy from power source to electrical without any physical contact and it can be used to transfer power to electricity dependent systems or devices. In WPT, electromagnetic energy is produced to transmit the energy from power source (transmitter) to the load (receiver) via resonant inductive coupling. This article focuses on the design of a resonant inductive coupling using parallel-T topology in coupling WTR and combined of single transmitter with multiple receivers. In addition, principle of magnetic wave between the transmitter and receiver with related parameters is utilized to develop in WPT. A parallel-T topology that consists of T-matching network for secondary side is proposed as it is more suitable for weak coupling wireless power transfer applications. Besides that, three circuits are designed to show the resonant inductive coupling for WTP which including the circuit with and without matching network and the circuit of single transmitter with multiple receivers. The simulation of output voltage and output current are observed to relate the effects of frequency on the circuit. The graph of output voltage and power are plotted to show the pattern on effect of the frequencies to the resonant inductive coupling circuit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线电力传输的谐振电感耦合
无线电力传输(WPT)是一种不需要任何物理接触就能将电能从电源传输到电源的方法,可用于向依赖电力的系统或设备传输电能。在WPT中,产生电磁能,通过谐振电感耦合将能量从电源(发射器)传输到负载(接收器)。本文重点研究了一种采用并联t型拓扑结构的谐振式电感耦合器的设计。此外,利用发射端和接收端之间的电磁波原理及相关参数进行WPT开发。提出了一种由二次侧t匹配网络组成的并联t拓扑结构,该拓扑结构更适合弱耦合无线电力传输应用。此外,还设计了三种电路来显示WTP的谐振电感耦合,包括有匹配网络和没有匹配网络的电路以及单发射机多接收机的电路。通过对输出电压和输出电流的仿真,观察了频率对电路的影响。绘制了输出电压和功率曲线图,显示了频率对谐振电感耦合电路的影响规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Power and Energy Systems
International Journal of Power and Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.00
自引率
0.00%
发文量
5
期刊介绍: First published in 1972, this journal serves a worldwide readership of power and energy professionals. As one of the premier referred publications in the field, this journal strives to be the first to explore emerging energy issues, featuring only papers of the highest scientific merit. The subject areas of this journal include power transmission, distribution and generation, electric power quality, education, energy development, competition and regulation, power electronics, communication, electric machinery, power engineering systems, protection, reliability and security, energy management systems and supervisory control, economics, dispatching and scheduling, energy systems modelling and simulation, alternative energy sources, policy and planning.
期刊最新文献
AN INTELLIGENT FUSION OBJECT-DETECTION ALGORITHM FOR SMART SUBSTATION SYSTEM, 1-7. AN IMPROVED ACTIVE PHASE-SHIFT ISLANDING DETECTION METHOD BASED ON FUZZY ADAPTIVE PID ALGORITHM, 1-6. Variable Frequency Control in High Switching Frequencies DC-DC Converters Resonant Inductive Coupling for Wireless Power Transmission Nine-level Cascaded H-Bridge Multilevel Inverter for Photovoltaic Sources Based on Hybrid Active Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1