Applications of process capability indices for suppliers selection problems using generalized confidence interval

Mahendra Saha, Anju Devi, Pratibha Pareek
{"title":"Applications of process capability indices for suppliers selection problems using generalized confidence interval","authors":"Mahendra Saha, Anju Devi, Pratibha Pareek","doi":"10.1080/23737484.2023.2219223","DOIUrl":null,"url":null,"abstract":"Abstract In process capability indices, the generalized confidence interval (GCI) method has been used many times in several research articles. In this article, we have considered the supplier’s selection problems by using the GCI of difference between two process capability indices . We have considered two classical methods of estimation, viz. maximum likelihood estimation (MLE), and maximum product spacing estimation (MPSE) to estimate . By using Monte Carlo simulation, we have obtained the biases and corresponding mean squared errors (MSEs) of . Here, we also find the lower confidence limit (L), upper confidence limit (U), and their corresponding average width (AW) for both classical methods MLE and MPSE. Three real data sets have been reanalyzed to illustrate the methodology of the supplier’s selection problem by utilizing the generalized confidence interval method.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"19 1","pages":"270 - 286"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2023.2219223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In process capability indices, the generalized confidence interval (GCI) method has been used many times in several research articles. In this article, we have considered the supplier’s selection problems by using the GCI of difference between two process capability indices . We have considered two classical methods of estimation, viz. maximum likelihood estimation (MLE), and maximum product spacing estimation (MPSE) to estimate . By using Monte Carlo simulation, we have obtained the biases and corresponding mean squared errors (MSEs) of . Here, we also find the lower confidence limit (L), upper confidence limit (U), and their corresponding average width (AW) for both classical methods MLE and MPSE. Three real data sets have been reanalyzed to illustrate the methodology of the supplier’s selection problem by utilizing the generalized confidence interval method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过程能力指标在供应商选择问题中的应用
在过程能力指标中,广义置信区间(GCI)方法在一些研究文章中被多次使用。本文利用两个过程能力指标之差的GCI来考虑供应商的选择问题。我们考虑了两种经典的估计方法,即最大似然估计(MLE)和最大积间距估计(MPSE)来估计。通过蒙特卡罗模拟,我们得到的偏差和相应的均方误差(MSEs)。在这里,我们还找到了经典方法MLE和MPSE的下置信限(L)、上置信限(U)及其对应的平均宽度(AW)。通过对三个实际数据集的重新分析,说明了利用广义置信区间法求解供应商选择问题的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1