J. Ali, Tanja Tane, Dihara Hossain, Jasmine Wang, S. Groveman, J. Samson, Fatima Kabalan, S. Huclier-Markai, A. Kawamura, S. Alexandratos, A. Younes
{"title":"Selectivity and affinity of heavy metals and radiometals for organic biomass: Implications for water remediation","authors":"J. Ali, Tanja Tane, Dihara Hossain, Jasmine Wang, S. Groveman, J. Samson, Fatima Kabalan, S. Huclier-Markai, A. Kawamura, S. Alexandratos, A. Younes","doi":"10.1080/01496395.2023.2208282","DOIUrl":null,"url":null,"abstract":"ABSTRACT Due to both natural and anthropogenic causes, waterways have a history of contamination with different heavy metals and radiometals. Among these, thorium (Th,) uranium (U,) arsenic (As,) and strontium (Sr) are noteworthy threats to humans due to chemical and radiological toxicity. Previous research has focused on inorganic materials to remove these metals. However, the use of recyclable and biodegradable waste materials to remove toxic metals has risen. This study seeks to use pistachio shells as a model for heavy metal selectivity and affinity for organic biomasses. The influence of kinetics and pH on selectivity/affinity of the shell for the metals was investigated. The individual metal affinity seen was Th > U > As > Sr. Selectivity for Th and U over As and Sr was seen at pH < 6, beginning to equalize at pH > 6. The maximum uptake for all metals tested occurs at pH 5 and t ≥2 h. Uptake of these metals follows pseudo-second order, intraparticle kinetics, and Freundlich isotherm. Finally, the selectivity of the shells for heavy metals was investigated using drinking water and seawater samples, with concurrent pronounced uptake of actinides and Sr being observed.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"40 1","pages":"1703 - 1717"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2208282","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Due to both natural and anthropogenic causes, waterways have a history of contamination with different heavy metals and radiometals. Among these, thorium (Th,) uranium (U,) arsenic (As,) and strontium (Sr) are noteworthy threats to humans due to chemical and radiological toxicity. Previous research has focused on inorganic materials to remove these metals. However, the use of recyclable and biodegradable waste materials to remove toxic metals has risen. This study seeks to use pistachio shells as a model for heavy metal selectivity and affinity for organic biomasses. The influence of kinetics and pH on selectivity/affinity of the shell for the metals was investigated. The individual metal affinity seen was Th > U > As > Sr. Selectivity for Th and U over As and Sr was seen at pH < 6, beginning to equalize at pH > 6. The maximum uptake for all metals tested occurs at pH 5 and t ≥2 h. Uptake of these metals follows pseudo-second order, intraparticle kinetics, and Freundlich isotherm. Finally, the selectivity of the shells for heavy metals was investigated using drinking water and seawater samples, with concurrent pronounced uptake of actinides and Sr being observed.
由于自然和人为原因,水道具有不同重金属和放射性金属污染的历史。其中,钍(Th),铀(U),砷(As,)和锶(Sr)由于化学和放射性毒性对人类构成了值得注意的威胁。以前的研究主要集中在无机材料上,以去除这些金属。然而,利用可回收和可生物降解的废物来去除有毒金属的情况有所增加。本研究试图使用开心果壳作为重金属选择性和有机生物质亲和力的模型。考察了动力学和pH对壳对金属的选择性/亲和力的影响。单个金属亲合力为Th > U > As > Sr。pH为6时,Th和U对As和Sr有选择性。所有测试金属的最大吸收发生在pH 5和t≥2 h。这些金属的吸收遵循伪二级、颗粒内动力学和Freundlich等温线。最后,在饮用水和海水样品中研究了壳对重金属的选择性,同时观察到锕系元素和锶的显著吸收。
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.