Calculating the probability of the failure-free operation of spur gear transmissions

S. Lebedev, V. Syzrantsev
{"title":"Calculating the probability of the failure-free operation of spur gear transmissions","authors":"S. Lebedev, V. Syzrantsev","doi":"10.17804/2410-9908.2022.3.013-024","DOIUrl":null,"url":null,"abstract":"The article presents an improved method for calculating the probability of failure-free operation of case-hardened spur gear transmissions. The existing methods for calculating the probability of failure-free operation of gear transmissions are analyzed. The failure tree for a case-hardened spur gear transmission is presented. The probability of failure-free operation of case-hardened cylindrical gear transmissions is presented as the product of the probabilities of failure-free operation of the gear and the wheel according to the following criteria (failure types): contact endurance (pitting), bending endurance (tooth breakage), and tooth interior fatigue fracture (deep contact chipping). An algorithm has been developed for calculating the probability of failure-free operation of case-hardened spur gear transmissions. To restore the torque distribution density function in the proposed method, nonparametric statistics methods are implemented. In the calculation of contact stresses, the skew angle is taken into account, which is the sum of two angles: the skew angle due to deformations of the transmission elements and the housing; the total angle of technological misalignment of wheel tooth surfaces, caused by errors in the manufacture of the teeth and mounting errors during the assembly of the transmission. An example of a test calculation of the probability of failure-free operation of a case-hardened spur gear transmission according to the presented method is given. Based on the work performed, conclusions are formulated.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"211 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2022.3.013-024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents an improved method for calculating the probability of failure-free operation of case-hardened spur gear transmissions. The existing methods for calculating the probability of failure-free operation of gear transmissions are analyzed. The failure tree for a case-hardened spur gear transmission is presented. The probability of failure-free operation of case-hardened cylindrical gear transmissions is presented as the product of the probabilities of failure-free operation of the gear and the wheel according to the following criteria (failure types): contact endurance (pitting), bending endurance (tooth breakage), and tooth interior fatigue fracture (deep contact chipping). An algorithm has been developed for calculating the probability of failure-free operation of case-hardened spur gear transmissions. To restore the torque distribution density function in the proposed method, nonparametric statistics methods are implemented. In the calculation of contact stresses, the skew angle is taken into account, which is the sum of two angles: the skew angle due to deformations of the transmission elements and the housing; the total angle of technological misalignment of wheel tooth surfaces, caused by errors in the manufacture of the teeth and mounting errors during the assembly of the transmission. An example of a test calculation of the probability of failure-free operation of a case-hardened spur gear transmission according to the presented method is given. Based on the work performed, conclusions are formulated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算正齿轮传动装置无故障运行的概率
本文提出了一种计算硬壳直齿齿轮传动无故障运行概率的改进方法。分析了现有的计算齿轮传动装置无故障运行概率的方法。给出了硬化直齿齿轮传动的故障树。根据以下准则(失效类型):接触耐力(点蚀)、弯曲耐力(齿断裂)和齿内疲劳断裂(深度接触切屑),将淬火圆柱齿轮传动装置的无故障运行概率表示为齿轮和车轮无故障运行概率的乘积。提出了一种计算硬壳直齿齿轮传动无故障运行概率的算法。为了恢复该方法中的扭矩分布密度函数,采用了非参数统计方法。在接触应力的计算中,考虑了斜角,它是两个角度的和:由于传动元件和外壳变形引起的斜角;齿面工艺偏差的总角度,是由齿的制造误差和变速器装配过程中的安装误差引起的。给出了用该方法计算淬火直齿齿轮传动装置无故障运行概率的实例。根据所做的工作,得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The technology of arc welding of dissimilar steels Experience in the application of simulation of hot forging in production conditions at the KUMW JSC Finite element simulation of frictional surface hardening by a rotary tool during the hardening of the faces of fixation holes for washers Exact solutions for the description of nonuniform unidirectional flows of magnetic fluids in the Lin–Sidorov–Aristov class A model of describing creep strains and porosity evolution for a hollow cylinder affected by internal gas pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1