Investigation on Surface Crack Resistance and Curing Measures of Airport Cement Concrete Pavement during Construction in Strong Wind and High Temperature Weather
{"title":"Investigation on Surface Crack Resistance and Curing Measures of Airport Cement Concrete Pavement during Construction in Strong Wind and High Temperature Weather","authors":"Hongbin Ge","doi":"10.48014/ems.20220727001","DOIUrl":null,"url":null,"abstract":"The airport cement concrete pavement is prone to surface shrinkage cracks during construction under strong wind and high temperature conditions. Based on this, in this paper, the influence effects and mechanisms of curing methods on early shrinkage and crack resistance of concrete were investigated through indoor tests to simulate strong wind environment and high temperature environment in summer, and the applicability of different curing methods in engineering practice was verified by on-site experiments. The indoor experiment results demonstrated that the concrete was more prone to cracks under strong wind than under high temperature. The indoor and on-site experimental results showed that it was difficult to ensure a crack-free concrete surface by employing traditional geotextile, simply spraying curing agent or using only water-saving moisturizing curing film, among them, utilizing composite geotextile curing film has the best anti crack effect. In addition, incorporating polymer water absorbent resin enables the concrete to be cured internally, so it can be used as a supplementary curing measure to further improve the crack resistance of concrete in strong wind and high temperature weather.","PeriodicalId":42984,"journal":{"name":"Journal of Materials and Engineering Structures","volume":"56 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials and Engineering Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48014/ems.20220727001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The airport cement concrete pavement is prone to surface shrinkage cracks during construction under strong wind and high temperature conditions. Based on this, in this paper, the influence effects and mechanisms of curing methods on early shrinkage and crack resistance of concrete were investigated through indoor tests to simulate strong wind environment and high temperature environment in summer, and the applicability of different curing methods in engineering practice was verified by on-site experiments. The indoor experiment results demonstrated that the concrete was more prone to cracks under strong wind than under high temperature. The indoor and on-site experimental results showed that it was difficult to ensure a crack-free concrete surface by employing traditional geotextile, simply spraying curing agent or using only water-saving moisturizing curing film, among them, utilizing composite geotextile curing film has the best anti crack effect. In addition, incorporating polymer water absorbent resin enables the concrete to be cured internally, so it can be used as a supplementary curing measure to further improve the crack resistance of concrete in strong wind and high temperature weather.