Rodrigo Marino, J. M. Lanza-Gutiérrez, T. Riesgo, M. Holgado
{"title":"Design Space Exploration for PCA Implementation of Embedded Learning in FPGAs","authors":"Rodrigo Marino, J. M. Lanza-Gutiérrez, T. Riesgo, M. Holgado","doi":"10.1109/ISCAS.2018.8351540","DOIUrl":null,"url":null,"abstract":"Nowadays, the growth of Industry 4.0 and Internet of Things (IoT) demands new solutions for designing low-power low-cost advanced computational algorithms. This work develops the sensor signal processing layer of a chemical biosensing IoT edge device using NanoPillar transducers. We propose to move from smart sensors to expert sensors, applying Principal Component Analysis (PCA) for dimensionality reduction in FPGAs. As a result, this paper provides a design space exploration of PCA implementation over FPGAs, studying parameters as throughput and resource usage.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"246 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nowadays, the growth of Industry 4.0 and Internet of Things (IoT) demands new solutions for designing low-power low-cost advanced computational algorithms. This work develops the sensor signal processing layer of a chemical biosensing IoT edge device using NanoPillar transducers. We propose to move from smart sensors to expert sensors, applying Principal Component Analysis (PCA) for dimensionality reduction in FPGAs. As a result, this paper provides a design space exploration of PCA implementation over FPGAs, studying parameters as throughput and resource usage.