Miniaturization of Planar Packaged Inductor Using NiZn and Low Cost Screen Printing Technique

C. Pardue, M. Bellaredj, A. Davis, M. Swaminathan
{"title":"Miniaturization of Planar Packaged Inductor Using NiZn and Low Cost Screen Printing Technique","authors":"C. Pardue, M. Bellaredj, A. Davis, M. Swaminathan","doi":"10.1109/ECTC.2017.183","DOIUrl":null,"url":null,"abstract":"Given the recent interest in power delivery design for the Internet of Things (IoT), current work aims to design a packaged power delivery solution for IoT. The power inductor takes up a large amount of the area in such an implementation. Planar power inductors are preferred for fabrication simplicity and cost. However, air core inductors do not have sufficient area efficiency for IoT solutions, necessitating the integration of a magnetic core on a planar inductor. This research demonstrates a low cost method of miniaturizing planar inductors using stencil printing technique with a magnetic composite for embedded power inductors for IoT edge device applications. Planar spiral inductors of varying dimensions and inductances are designed using a full wave EM solver. Inductors are then fabricated on FR4 using standard printed wiring board process. NiZn is a low loss magnetic material and is mixed with an epoxy and solvent to facilitate stencil printing. Stencil printing is a low cost fabrication method with great utility to electronic packaging. A single layer of NiZn is screen printed as squares directly on the fabricated spiral inductors. Measurements are performed using a vector network analyzer at frequencies between 10 and 50 MHz. The measured inductance of the inductors ranges from 37 nH-340 nH without NiZn to 42 nH-452 nH with a single NiZn layer at the operating frequencies. In addition, the Q factor is actually improved at the frequency of operation, as the inductance gained from the magnetic layer is more significant than the loss incurred. This increase in inductance leads to great potential for decrease of size of packaged inductors.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"3 1","pages":"2275-2281"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2017.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Given the recent interest in power delivery design for the Internet of Things (IoT), current work aims to design a packaged power delivery solution for IoT. The power inductor takes up a large amount of the area in such an implementation. Planar power inductors are preferred for fabrication simplicity and cost. However, air core inductors do not have sufficient area efficiency for IoT solutions, necessitating the integration of a magnetic core on a planar inductor. This research demonstrates a low cost method of miniaturizing planar inductors using stencil printing technique with a magnetic composite for embedded power inductors for IoT edge device applications. Planar spiral inductors of varying dimensions and inductances are designed using a full wave EM solver. Inductors are then fabricated on FR4 using standard printed wiring board process. NiZn is a low loss magnetic material and is mixed with an epoxy and solvent to facilitate stencil printing. Stencil printing is a low cost fabrication method with great utility to electronic packaging. A single layer of NiZn is screen printed as squares directly on the fabricated spiral inductors. Measurements are performed using a vector network analyzer at frequencies between 10 and 50 MHz. The measured inductance of the inductors ranges from 37 nH-340 nH without NiZn to 42 nH-452 nH with a single NiZn layer at the operating frequencies. In addition, the Q factor is actually improved at the frequency of operation, as the inductance gained from the magnetic layer is more significant than the loss incurred. This increase in inductance leads to great potential for decrease of size of packaged inductors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用NiZn和低成本丝网印刷技术实现平面封装电感的小型化
鉴于最近对物联网(IoT)的电力输送设计的兴趣,目前的工作旨在为物联网设计一种封装的电力输送解决方案。在这种实现中,功率电感占据了大量的面积。平面功率电感由于制造简单和成本低而被首选。然而,对于物联网解决方案,空芯电感器没有足够的面积效率,因此需要将磁芯集成在平面电感器上。本研究展示了一种低成本的方法,利用磁性复合材料的模板印刷技术,将平面电感小型化,用于物联网边缘设备应用的嵌入式功率电感。利用全波电磁求解器设计了不同尺寸和电感的平面螺旋电感。然后使用标准印刷线路板工艺在FR4上制造电感器。NiZn是一种低损耗磁性材料,与环氧树脂和溶剂混合,便于模板印刷。模板印刷是一种低成本的电子封装制造方法。单层NiZn被丝网印刷成正方形直接在制造的螺旋电感。测量使用矢量网络分析仪在10和50 MHz之间的频率进行。在工作频率下,电感的测量电感值从37 nH-340 nH到42 nH-452 nH,无NiZn层。此外,由于从磁层获得的电感比产生的损耗更显著,Q因子实际上在工作频率上得到了改善。电感的增加导致封装电感尺寸减小的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peridynamic Solution of Wetness Equation with Time Dependent Saturated Concentration in ANSYS Framework Axially Tapered Circular Core Polymer Optical Waveguides Enabling Highly Efficient Light Coupling Low Loss Channel-Shuffling Polymer Waveguides: Design and Fabrication Development of Packaging Technology for High Temperature Resistant SiC Module of Automobile Application 3D Packaging of Embedded Opto-Electronic Die and CMOS IC Based on Wet Etched Silicon Interposer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1