Qualitative spatial and temporal reasoning over diagrams for activity recognition

Chayanika Deka Nath, S. Hazarika
{"title":"Qualitative spatial and temporal reasoning over diagrams for activity recognition","authors":"Chayanika Deka Nath, S. Hazarika","doi":"10.1145/3009977.3010015","DOIUrl":null,"url":null,"abstract":"In quest for an efficient representation schema for activity recognition in video, we employ techniques combining diagrammatic reasoning (DR) with qualitative spatial and temporal reasoning (QSTR). QSTR allows qualitative abstraction of spatio-temporal relations among objects of interest; and is often thwart by ambiguous conclusions. 'Diagrams' influence cognitive reasoning by externalizing mental context. Hence, QSTR over diagrams holds promise. We define 'diagrams' as explicit representation of objects of interest and their spatial information on a 2D grid. A sequence of 'key diagrams' is extracted. Inter diagrammatic reasoning operators combine 'key diagrams' to obtain spatio-temporal information. The qualitative spatial and temporal information thus obtained define short-term activity (STA). Several STAs combine to form long-term activities (LTA). Sequence of STAs as a feature vector is used for LTA recognition. We evaluate our approach over six LTAs from the CAVIAR dataset.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"25 1","pages":"72:1-72:6"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In quest for an efficient representation schema for activity recognition in video, we employ techniques combining diagrammatic reasoning (DR) with qualitative spatial and temporal reasoning (QSTR). QSTR allows qualitative abstraction of spatio-temporal relations among objects of interest; and is often thwart by ambiguous conclusions. 'Diagrams' influence cognitive reasoning by externalizing mental context. Hence, QSTR over diagrams holds promise. We define 'diagrams' as explicit representation of objects of interest and their spatial information on a 2D grid. A sequence of 'key diagrams' is extracted. Inter diagrammatic reasoning operators combine 'key diagrams' to obtain spatio-temporal information. The qualitative spatial and temporal information thus obtained define short-term activity (STA). Several STAs combine to form long-term activities (LTA). Sequence of STAs as a feature vector is used for LTA recognition. We evaluate our approach over six LTAs from the CAVIAR dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定性的空间和时间推理图的活动识别
为了寻求视频中活动识别的有效表示模式,我们采用了将图解推理(DR)与定性时空推理(QSTR)相结合的技术。QSTR允许对感兴趣的对象之间的时空关系进行定性抽象;而且常常被模棱两可的结论所挫败。“图表”通过外化心理环境来影响认知推理。因此,QSTR比图更有希望。我们将“图表”定义为感兴趣的对象及其在二维网格上的空间信息的明确表示。提取出一系列“关键图”。图间推理运算符结合“关键图”来获得时空信息。由此获得的定性时空信息定义了短期活动(STA)。几个sta结合起来形成长期活动(LTA)。使用sta序列作为特征向量进行LTA识别。我们在来自CAVIAR数据集的六个lta上评估了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱ Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI. ICVGIP 2018: 11th Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, 18-22 December, 2018 Towards semantic visual representation: augmenting image representation with natural language descriptors Adaptive artistic stylization of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1