Ultraviolet (UV) curable hybrid material based on palm oil: plasticization effect and flame retardancy

MG Muhammad Ammar, PR Sua, A. Azizah, A. Alosaimi, M. Hussein, H. Rozman, GS Tay
{"title":"Ultraviolet (UV) curable hybrid material based on palm oil: plasticization effect and flame retardancy","authors":"MG Muhammad Ammar, PR Sua, A. Azizah, A. Alosaimi, M. Hussein, H. Rozman, GS Tay","doi":"10.1177/09673911231158998","DOIUrl":null,"url":null,"abstract":"In this study, a UV curable hybrid material from palm oil was prepared with glycerol and glycidyl methacrylate (GMA). However, the resin was brittle and flammable. Thus, tri-n-butyl phosphate (TnBP) and polypropylene glycol 400 (PPG) were added in the formulation as a flame retardant and plasticizer respectively. From the results, the gel content of UV cured films were more than 95%. The hardness, adhesion strength, impact, water absorption and wettability of the films were influenced by PPG 400 content as well as TnBP percentage. In addition, the flame retardant properties of coated wood were enhanced by PPG 400 and TnBP too. The results show that high oxygen concentration was needed to ignite the sample with a high amount of PPG 400 and TnBP. The flame retardant properties of the sample were the best for a combination of 15% PPG 400, and 5% TnBP, in the determination of limited oxygen index (LOI), UL 94 and Methenamine pill test.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231158998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a UV curable hybrid material from palm oil was prepared with glycerol and glycidyl methacrylate (GMA). However, the resin was brittle and flammable. Thus, tri-n-butyl phosphate (TnBP) and polypropylene glycol 400 (PPG) were added in the formulation as a flame retardant and plasticizer respectively. From the results, the gel content of UV cured films were more than 95%. The hardness, adhesion strength, impact, water absorption and wettability of the films were influenced by PPG 400 content as well as TnBP percentage. In addition, the flame retardant properties of coated wood were enhanced by PPG 400 and TnBP too. The results show that high oxygen concentration was needed to ignite the sample with a high amount of PPG 400 and TnBP. The flame retardant properties of the sample were the best for a combination of 15% PPG 400, and 5% TnBP, in the determination of limited oxygen index (LOI), UL 94 and Methenamine pill test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以棕榈油为基础的紫外线固化混合材料:增塑性和阻燃性
本研究以棕榈油为原料,用甘油和甲基丙烯酸缩水甘油酯(GMA)制备了一种可紫外光固化的杂化材料。然而,这种树脂易碎且易燃。因此,在配方中分别加入磷酸三丁酯(TnBP)和聚丙烯乙二醇400 (PPG)作为阻燃剂和增塑剂。结果表明,UV固化膜的凝胶含量在95%以上。PPG 400含量和TnBP含量对膜的硬度、粘接强度、冲击、吸水性和润湿性均有影响。此外,ppg400和TnBP还能提高涂层木材的阻燃性能。结果表明,在高氧浓度下,PPG - 400和TnBP均可点燃样品。在限氧指数(LOI)测定、UL 94测定和甲基苯丙胺丸试验中,15% PPG 400和5% TnBP的组合阻燃性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and characterising FFF process of semi-crystalline polymers: Warpage formation and mechanism analysis Machine learning non-isothermal study of the blade coating process (NIS-BCP) using non-Newtonian nanofluid with magnetohydrodynamic (MHD) and slip effects Performance of polyurethane and polyurethane nanocomposites modified by graphene, carbon nanotubes, and fumed silica in dry and wet environments Effect of hybrid weaving patterns on mechanical performance of 3D woven structures Investigation of effects of bis(2-hydroxyethyl) terephthalate derived from glycolysis of polyethylene terephthalate on the properties of flexible polyurethane foam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1