On modelling of resiliency events using building performance simulation: a multi-objective approach

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Building Performance Simulation Pub Date : 2022-03-22 DOI:10.1080/19401493.2022.2044906
S. Bucking, M. Rostami, Joshua Reinhart, Max St-Jacques
{"title":"On modelling of resiliency events using building performance simulation: a multi-objective approach","authors":"S. Bucking, M. Rostami, Joshua Reinhart, Max St-Jacques","doi":"10.1080/19401493.2022.2044906","DOIUrl":null,"url":null,"abstract":"Climate change brings several challenges to BPS practitioners beyond GHG emission mitigation. Adaptation to grid-outage events, caused by both acute and chronic stresses, requires consideration of how building services can be provided to occupants in a time of need. At the moment, we lack both the tools and processes to quantify key metrics such as thermal resiliency in tandem with annual performance indicators. This paper proposes a multi-objective approach using thermal resiliency, annual net-energy, and life-cycle cost to better quantify building performance during grid-outages. The approach can handle a variety of events, using shortened simulation periods, and consider cost-implications of outages by applying the value of the lost load to annual operational costs. The methodology is demonstrated using a case-study and a historical grid-outage from an ice-storm event. Resiliency indicators are improved by two times and the payback of upgrade packages is decreased to 14 years for a single outage event.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"40 1","pages":"307 - 322"},"PeriodicalIF":2.2000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2044906","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Climate change brings several challenges to BPS practitioners beyond GHG emission mitigation. Adaptation to grid-outage events, caused by both acute and chronic stresses, requires consideration of how building services can be provided to occupants in a time of need. At the moment, we lack both the tools and processes to quantify key metrics such as thermal resiliency in tandem with annual performance indicators. This paper proposes a multi-objective approach using thermal resiliency, annual net-energy, and life-cycle cost to better quantify building performance during grid-outages. The approach can handle a variety of events, using shortened simulation periods, and consider cost-implications of outages by applying the value of the lost load to annual operational costs. The methodology is demonstrated using a case-study and a historical grid-outage from an ice-storm event. Resiliency indicators are improved by two times and the payback of upgrade packages is decreased to 14 years for a single outage event.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于使用建筑性能模拟的弹性事件建模:多目标方法
除温室气体减排外,气候变化给BPS从业者带来了若干挑战。适应由急性和慢性压力引起的电网中断事件,需要考虑如何在需要时为居住者提供建筑服务。目前,我们缺乏将热弹性等关键指标与年度绩效指标相结合进行量化的工具和流程。本文提出了一种多目标方法,利用热弹性、年净能源和生命周期成本来更好地量化电网中断期间的建筑性能。该方法可以处理各种事件,使用缩短的模拟周期,并通过将损失负载的价值应用于年度运营成本来考虑中断的成本影响。该方法通过案例研究和冰暴事件造成的历史电网中断进行了演示。弹性指标提高了两倍,升级包的投资回收期缩短至单次停机事件的14年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
期刊最新文献
Comparing overheating risk and mitigation strategies for two Canadian schools by using building simulation calibrated with measured data Using Fourier series to obtain cross periodic wall response factors Limitations and issues of conventional artificial neural network-based surrogate models for building energy retrofit An empirical review of methods to assess overheating in buildings in the context of changes to extreme heat events Coupling BIM and detailed modelica simulations of HVAC systems in a common data environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1