{"title":"Low-cost, single-step hybrid bond/barrier films for Cu bondlines in advanced packaging","authors":"Qiran Xiao, Brian L. Watson, R. Dauskardt","doi":"10.1109/IITC-MAM.2015.7325656","DOIUrl":null,"url":null,"abstract":"The presence of weak Cu-oxides has detrimental implications for the adhesion, moisture sensitivity, stress-and electro-migration of Cu bondlines in advanced packaging, often leading to premature device failure. We report on a novel, low-cost, single-step sol-gel synthetic route capable of reducing the weak Cu-oxide while simultaneously depositing a high-performance hybrid film, which acts both as an adhesion layer at the Cu/epoxy interface, as well as potentially a barrier film that prevents moisture degradation and Cu stress- and electro-migration.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"94 1","pages":"225-228"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC-MAM.2015.7325656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of weak Cu-oxides has detrimental implications for the adhesion, moisture sensitivity, stress-and electro-migration of Cu bondlines in advanced packaging, often leading to premature device failure. We report on a novel, low-cost, single-step sol-gel synthetic route capable of reducing the weak Cu-oxide while simultaneously depositing a high-performance hybrid film, which acts both as an adhesion layer at the Cu/epoxy interface, as well as potentially a barrier film that prevents moisture degradation and Cu stress- and electro-migration.