Rewriting the rules governing high intensity interactions of light with matter

IF 19 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Reports on Progress in Physics Pub Date : 2016-03-22 DOI:10.1088/0034-4885/79/4/046401
A. Borisov, J. McCorkindale, S. Poopalasingam, J. Longworth, P. Simon, S. Szatmári, C. Rhodes
{"title":"Rewriting the rules governing high intensity interactions of light with matter","authors":"A. Borisov, J. McCorkindale, S. Poopalasingam, J. Longworth, P. Simon, S. Szatmári, C. Rhodes","doi":"10.1088/0034-4885/79/4/046401","DOIUrl":null,"url":null,"abstract":"The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 103 eV and I  ≈  1016 W cm−2, it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α  →  Z2α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d105s25p6) supershell for which Z  ≅  18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z2α  ≅  2.4  >  1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also conclusively demonstrated by an abundance of data that the utterly peerless champion of the experimental campaign leading to the definition of the fundamental nonlinear domain was excimer laser technology. The basis of this unique role was the ability to satisfy simultaneously a triplet (ω, I, P) of conditions stating the minimal values of the frequency ω, intensity I, and the power P necessary to enable the key physical processes to be experimentally observed and controllably combined. The historical confluence of these developments creates a solid foundation for the prediction of future advances in the fundamental understanding of ultra-high power density states of matter. The atomic findings graciously generalize to the composition of a nuclear stanza expressing the accessibility of the nuclear domain. With this basis serving as the launch platform, a cadenza of three grand challenge problems representing both new materials and new interactions is presented for future solution; they are (1) the performance of an experimental probe of the properties of the vacuum state associated with the dark energy at an intensity approaching the Schwinger/Heisenberg limit, (2) the attainment of amplification in the γ-ray region (~1 MeV) and the discovery of a nuclear excimer, and (3) the determination of a path to the projected super-heavy nuclear island of stability.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"6 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0034-4885/79/4/046401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 103 eV and I  ≈  1016 W cm−2, it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α  →  Z2α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d105s25p6) supershell for which Z  ≅  18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z2α  ≅  2.4  >  1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also conclusively demonstrated by an abundance of data that the utterly peerless champion of the experimental campaign leading to the definition of the fundamental nonlinear domain was excimer laser technology. The basis of this unique role was the ability to satisfy simultaneously a triplet (ω, I, P) of conditions stating the minimal values of the frequency ω, intensity I, and the power P necessary to enable the key physical processes to be experimentally observed and controllably combined. The historical confluence of these developments creates a solid foundation for the prediction of future advances in the fundamental understanding of ultra-high power density states of matter. The atomic findings graciously generalize to the composition of a nuclear stanza expressing the accessibility of the nuclear domain. With this basis serving as the launch platform, a cadenza of three grand challenge problems representing both new materials and new interactions is presented for future solution; they are (1) the performance of an experimental probe of the properties of the vacuum state associated with the dark energy at an intensity approaching the Schwinger/Heisenberg limit, (2) the attainment of amplification in the γ-ray region (~1 MeV) and the discovery of a nuclear excimer, and (3) the determination of a path to the projected super-heavy nuclear island of stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改写了光与物质高强度相互作用的规则
在过去的50年里,与高强度非线性辐射与物质相互作用的研究以及电磁传播的相应非线性模式相关的发现轨迹可以在强度/量子能量[I-ħω]平面上呈现。基于一系列广泛的实验和理论发现,可以定义一个异常增强电磁耦合的通用区域,指定为基本非线性域。由于该区域所有原子物质的下边界对应于ħω ~ 103 eV和I≈1016 W cm−2,它预示着未来以x射线和γ射线研究为主导的物质包括核态的所有相。与材料相互作用强度的增强一般可以表示为基本电磁耦合常数的增加,其中精细结构常数α→Z2α,其中Z表示参与驱动场有序响应的电子数。由于有利于这种增强电磁耦合发展的辐射条件很容易在自困等离子体通道中产生,因此与材料产生非线性相互作用相关的过程与诱导受限传播的非线性机制自然结合。描述了一个涉及Xe (4d105s25p6)超壳层的实验实例,其中Z = 18落在指定的反常非线性域内。这就产生了一个有效的耦合常数Z2α = 2.4 > 1,其量级可与强相互作用相媲美,而其值则是建立在α的幂次展开基础上的无用的传统微扰分析。这种增强可以定量地理解为在耦合动力学中相干驱动的多重激发态所起的主导作用的直接结果。大量的数据也确凿地证明,在导致基本非线性域定义的实验运动中,绝对无与伦比的冠军是准分子激光技术。这一独特作用的基础是能够同时满足三个条件(ω, I, P),这些条件说明了频率ω,强度I和功率P的最小值,从而使关键的物理过程能够通过实验观察和可控地组合。这些发展的历史汇合为预测超高功率密度物质状态的基本理解的未来进展奠定了坚实的基础。原子的发现优雅地推广到一个核节的组成,表达了核域的可及性。以这个基础作为启动平台,展示了代表新材料和新相互作用的三大挑战问题,以供未来解决;它们是:(1)在接近Schwinger/Heisenberg极限的强度下,对与暗能量相关的真空态性质的实验探测的性能,(2)在γ射线区域(~1 MeV)的放大的实现和核准分子的发现,以及(3)确定了通往预测的超重稳定核岛的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reports on Progress in Physics
Reports on Progress in Physics 物理-物理:综合
CiteScore
31.90
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.
期刊最新文献
Key Issues Review: Useful autonomous quantum machines. Recent developments in tornado theory and observations. A comprehensive review of quantum machine learning: from NISQ to fault tolerance. Physics and technology of Laser Lightning Control. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1