Towards GFDM for Handsets - Efficient and Scalable Implementation on a Vector DSP

Stefan A. Damjancevic, E. Matús, Dmitry Utyansky, P. V. D. Wolf, G. Fettweis
{"title":"Towards GFDM for Handsets - Efficient and Scalable Implementation on a Vector DSP","authors":"Stefan A. Damjancevic, E. Matús, Dmitry Utyansky, P. V. D. Wolf, G. Fettweis","doi":"10.1109/VTCFall.2019.8891093","DOIUrl":null,"url":null,"abstract":"Generalised frequency division multiplexing (GFDM) is a novel multicarrier waveform with reduced out- of-band emission and peak-to-average-power-ratio compared to orthogonal frequency division multiplexing. Due to these properties, GFDM is regarded a candidate waveform for future wireless communication. However, an implementation that addresses operating conditions of handheld devices has not yet been considered. We propose a software programmable GFDM solution for handheld devices. This paper presents necessary capabilities of a vector DSP implementation to efficiently process GFDM in the context of 5G use cases. We investigate structural properties and numerical precision of the GFDM algorithm, propose a scalable vectorised approach for single instruction multiple data processing, and carry out a performance-cost evaluation. We present our key findings to enable GFDM functionality on handheld user equipment.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"207 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Generalised frequency division multiplexing (GFDM) is a novel multicarrier waveform with reduced out- of-band emission and peak-to-average-power-ratio compared to orthogonal frequency division multiplexing. Due to these properties, GFDM is regarded a candidate waveform for future wireless communication. However, an implementation that addresses operating conditions of handheld devices has not yet been considered. We propose a software programmable GFDM solution for handheld devices. This paper presents necessary capabilities of a vector DSP implementation to efficiently process GFDM in the context of 5G use cases. We investigate structural properties and numerical precision of the GFDM algorithm, propose a scalable vectorised approach for single instruction multiple data processing, and carry out a performance-cost evaluation. We present our key findings to enable GFDM functionality on handheld user equipment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向手机的GFDM——在矢量DSP上的高效可扩展实现
广义频分复用(GFDM)是一种新型的多载波波形,与正交频分复用相比,它具有较低的带外发射和峰均功率比。由于这些特性,GFDM被认为是未来无线通信的候选波形。然而,解决手持设备操作条件的实现尚未被考虑。我们提出了一种用于手持设备的软件可编程GFDM解决方案。本文介绍了矢量DSP实现在5G用例背景下有效处理GFDM的必要功能。我们研究了GFDM算法的结构特性和数值精度,提出了一种可扩展的单指令多数据处理矢量化方法,并进行了性能成本评估。我们提出了在手持用户设备上实现GFDM功能的主要发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Emergency Braking as a Fail-Safe State in Platooning: A Simulative Approach Online Task Offloading with Bandit Learning in Fog-Assisted IoT Systems Hybrid Localization: A Low Cost, Low Complexity Approach Based on Wi-Fi and Odometry Residual Energy Optimization for MIMO SWIPT Two-Way Relaying System Traffic Forecast in Mobile Networks: Classification System Using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1