Chia-Yuan Chen, W. Fang, Chiko Chen, Jing-Tang Yang, P. Lyu
{"title":"Separation of Amino Acids by Aqueous Two-Phase Electrophoresis on the Micro-Pillar Chips","authors":"Chia-Yuan Chen, W. Fang, Chiko Chen, Jing-Tang Yang, P. Lyu","doi":"10.1109/NEMS.2006.334830","DOIUrl":null,"url":null,"abstract":"A micro-pillar chip is proposed and developed to separate the amino acids, phenylalanine and tryptophan, through the aqueous two-phase system (ATPS). The surface properties of micro-pillars, specifically hydrophobicity and hydrophilicity for separation are also investigated. Because their isoelectric points (pI values) are similar, these amino acids are difficult to separate by general extraction techniques; the ATPS is thus adopted in a micro-system to separate these amino acids and only a few micro liters of sample are required. The results reveal that the various surface properties of micro-pillars distinguish the separation mechanisms and efficiency. When the micro-pillar array is constructed in the ATPS, the separation efficiency is improved. Furthermore, the surface of micro-pillars becomes activated from hydrophobic to hydrophilic, and micro-pillars with a hydrophilic surface increase the separation ability without sample residues. Hence separation is improved on incorporating hydrophilic micro-pillars in the ATPS","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"27 1","pages":"513-518"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A micro-pillar chip is proposed and developed to separate the amino acids, phenylalanine and tryptophan, through the aqueous two-phase system (ATPS). The surface properties of micro-pillars, specifically hydrophobicity and hydrophilicity for separation are also investigated. Because their isoelectric points (pI values) are similar, these amino acids are difficult to separate by general extraction techniques; the ATPS is thus adopted in a micro-system to separate these amino acids and only a few micro liters of sample are required. The results reveal that the various surface properties of micro-pillars distinguish the separation mechanisms and efficiency. When the micro-pillar array is constructed in the ATPS, the separation efficiency is improved. Furthermore, the surface of micro-pillars becomes activated from hydrophobic to hydrophilic, and micro-pillars with a hydrophilic surface increase the separation ability without sample residues. Hence separation is improved on incorporating hydrophilic micro-pillars in the ATPS