{"title":"SPR-based Tree Reconciliation: Non-binary Trees and Multiple Solutions","authors":"Cuong V. Than, L. Nakhleh","doi":"10.1142/9781848161092_0027","DOIUrl":null,"url":null,"abstract":"The SPR (subtree prune and regraft) operation is used as the basis for reconciling incongruent phylogenetic trees, particularly for detecting and analyzing non-treelike evolutionary histories such as horizontal gene transfer, hybrid speciation, and recombination. The SPR-based tree reconciliation problem has been shown to be NP-hard, and several efficient heuristics have been designed to solve it. A major drawback of these heuristics is that for the most part they do not handle non-binary trees appropriately. Further, their computational efficiency suffers significantly when computing multiple optimal reconciliations. In this paper, we present algorithmic techniques for efficient SPR-based reconciliation of trees that are not necessarily binary. Further, we present divide-and-conquer approaches that enable efficient computing of multiple optimal reconciliations. We have implemented our techniques in the PhyloNet software package, which is publicly available at http://bioinfo.cs.rice.edu. The resulting method outperforms all existing methods in terms of speed, and performs at least as well as those methods in terms of accuracy.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"98 1","pages":"251-260"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848161092_0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
The SPR (subtree prune and regraft) operation is used as the basis for reconciling incongruent phylogenetic trees, particularly for detecting and analyzing non-treelike evolutionary histories such as horizontal gene transfer, hybrid speciation, and recombination. The SPR-based tree reconciliation problem has been shown to be NP-hard, and several efficient heuristics have been designed to solve it. A major drawback of these heuristics is that for the most part they do not handle non-binary trees appropriately. Further, their computational efficiency suffers significantly when computing multiple optimal reconciliations. In this paper, we present algorithmic techniques for efficient SPR-based reconciliation of trees that are not necessarily binary. Further, we present divide-and-conquer approaches that enable efficient computing of multiple optimal reconciliations. We have implemented our techniques in the PhyloNet software package, which is publicly available at http://bioinfo.cs.rice.edu. The resulting method outperforms all existing methods in terms of speed, and performs at least as well as those methods in terms of accuracy.