A review of techniques for machine learning of real-time control strategies

R. Vepa
{"title":"A review of techniques for machine learning of real-time control strategies","authors":"R. Vepa","doi":"10.1049/ISE.1993.0009","DOIUrl":null,"url":null,"abstract":"In this paper, techniques for machine learning of real-time control strategies are presented and reviewed from a control engineer's point of view. The objective is to present a consolidated view, both in the context of classical control theory and modern artificial intelligence practice. The review seeks to present the principal contributions to the field and the impact of these contributions on control engineering, particularly from the machine learning point of view. >","PeriodicalId":55165,"journal":{"name":"Engineering Intelligent Systems for Electrical Engineering and Communications","volume":"15 1","pages":"77-90"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Intelligent Systems for Electrical Engineering and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ISE.1993.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, techniques for machine learning of real-time control strategies are presented and reviewed from a control engineer's point of view. The objective is to present a consolidated view, both in the context of classical control theory and modern artificial intelligence practice. The review seeks to present the principal contributions to the field and the impact of these contributions on control engineering, particularly from the machine learning point of view. >
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时控制策略的机器学习技术综述
本文从控制工程师的角度介绍和回顾了实时控制策略的机器学习技术。目的是在经典控制理论和现代人工智能实践的背景下提出一个统一的观点。本综述旨在介绍该领域的主要贡献以及这些贡献对控制工程的影响,特别是从机器学习的角度。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel genetic algorithm for generation expansion planning Neural network based classification system for texture images with its applications TIGER: real-time situation assessment of dynamic systems Auto-associative memory using n-tuple techniques Scheduling theory and practice: Minsk group results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1