Structural Clustering of Volatility Regimes for Dynamic Trading Strategies

A. Prakash, Nick James, Max Menzies, Gilad Francis
{"title":"Structural Clustering of Volatility Regimes for Dynamic Trading Strategies","authors":"A. Prakash, Nick James, Max Menzies, Gilad Francis","doi":"10.1080/1350486X.2021.2007146","DOIUrl":null,"url":null,"abstract":"ABSTRACT We develop a new method to find the number of volatility regimes in a nonstationary financial time series by applying unsupervised learning to its volatility structure. We use change point detection to partition a time series into locally stationary segments and then compute a distance matrix between segment distributions. The segments are clustered into a learned number of discrete volatility regimes via an optimization routine. Using this framework, we determine the volatility clustering structure for financial indices, large-cap equities, exchange-traded funds and currency pairs. Our method overcomes the rigid assumptions necessary to implement many parametric regime-switching models while effectively distilling a time series into several characteristic behaviours. Our results provide a significant simplification of these time series and a strong descriptive analysis of prior behaviours of volatility. Finally, we create and validate a dynamic trading strategy that learns the optimal match between the current distribution of a time series and its past regimes, thereby making online risk-avoidance decisions at present.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"10 1","pages":"236 - 274"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2021.2007146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 19

Abstract

ABSTRACT We develop a new method to find the number of volatility regimes in a nonstationary financial time series by applying unsupervised learning to its volatility structure. We use change point detection to partition a time series into locally stationary segments and then compute a distance matrix between segment distributions. The segments are clustered into a learned number of discrete volatility regimes via an optimization routine. Using this framework, we determine the volatility clustering structure for financial indices, large-cap equities, exchange-traded funds and currency pairs. Our method overcomes the rigid assumptions necessary to implement many parametric regime-switching models while effectively distilling a time series into several characteristic behaviours. Our results provide a significant simplification of these time series and a strong descriptive analysis of prior behaviours of volatility. Finally, we create and validate a dynamic trading strategy that learns the optimal match between the current distribution of a time series and its past regimes, thereby making online risk-avoidance decisions at present.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态交易策略中波动机制的结构聚类
本文提出了一种新的方法,通过对金融时间序列的波动结构进行无监督学习,来寻找非平稳金融时间序列中波动机制的数量。我们使用变化点检测将时间序列划分为局部平稳的片段,然后计算片段分布之间的距离矩阵。通过一个优化程序,将这些片段聚类成一个学习到的离散波动区。利用这一框架,我们确定了金融指数、大盘股、交易所交易基金和货币对的波动性聚类结构。我们的方法克服了实现许多参数状态切换模型所需的刚性假设,同时有效地将时间序列提取为几个特征行为。我们的结果提供了这些时间序列的显著简化和对波动率先前行为的强有力的描述性分析。最后,我们创建并验证了一种动态交易策略,该策略可以学习时间序列当前分布与其过去制度之间的最优匹配,从而在当前做出在线风险规避决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1