{"title":"A comparative QSAR study of aryl-substituted isobenzofuran-1(3H)-ones inhibitors","authors":"Z. Rostami, E. Pourbasheer","doi":"10.33945/SAMI/ECC.2019.1.7","DOIUrl":null,"url":null,"abstract":"A comparative workflow, including linear and non-linear QSAR models, was carried out to evaluate the predictive accuracy of models and predict the inhibition activity of a series of aryl-substituted isobenzofuran-1(3H)-ones. The data set consisted of 34 compounds was classified into the training and test sets, randomly. Molecular descriptors were selected using the genetic algorithm (GA) as a feature selection tool. Various linear models based on multiple linear regression (MLR), principle component regression (PCR) and partial least square (PLS) and non-linear models based on artificial neural network (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM) methods were developed and compared. The accuracy of the models was studied by leave-one-out cross-validation (Q_LOO^2), Y-randomization test and group of compounds as external test set. Six descriptors were selected by GA to develop predictive models. With respect to the linear models, GA-PCR method was more accurate than the reset with statistical results of 〖 R〗_train^2=0.883, R_test^2=0.897,〖 R〗_(adj,train)^2=0.829,〖 R〗_(adj,test)^2=0.849,〖 F〗_train=24.07 and F_test=34.17. In case of non-linear models, GA-SVM (R_train^2=0.992 and R_test^2=0.997) showed high predictive accuracy for the inhibitory activity. It was found that the selected descriptors have the major roles in interpretation of biological activities of the compounds.","PeriodicalId":14624,"journal":{"name":"Iranian Chemical Communication","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Chemical Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/SAMI/ECC.2019.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A comparative workflow, including linear and non-linear QSAR models, was carried out to evaluate the predictive accuracy of models and predict the inhibition activity of a series of aryl-substituted isobenzofuran-1(3H)-ones. The data set consisted of 34 compounds was classified into the training and test sets, randomly. Molecular descriptors were selected using the genetic algorithm (GA) as a feature selection tool. Various linear models based on multiple linear regression (MLR), principle component regression (PCR) and partial least square (PLS) and non-linear models based on artificial neural network (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM) methods were developed and compared. The accuracy of the models was studied by leave-one-out cross-validation (Q_LOO^2), Y-randomization test and group of compounds as external test set. Six descriptors were selected by GA to develop predictive models. With respect to the linear models, GA-PCR method was more accurate than the reset with statistical results of 〖 R〗_train^2=0.883, R_test^2=0.897,〖 R〗_(adj,train)^2=0.829,〖 R〗_(adj,test)^2=0.849,〖 F〗_train=24.07 and F_test=34.17. In case of non-linear models, GA-SVM (R_train^2=0.992 and R_test^2=0.997) showed high predictive accuracy for the inhibitory activity. It was found that the selected descriptors have the major roles in interpretation of biological activities of the compounds.