{"title":"Efficient numerical solution of the Fokker-Planck equation using physics-conforming finite element methods","authors":"Katharina Wegener, D. Kuzmin, S. Turek","doi":"10.1515/jnma-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract We consider the Fokker–Planck equation (FPE) for the orientation probability density of fiber suspensions. Using the continuous Galerkin method, we express the numerical solution in terms of Lagrange basis functions that are associated with N nodes of a computational mesh for a domain in the 3D physical space and M nodes of a mesh for the surface of a unit sphere representing the configuration space. The NM time-dependent unknowns of our finite element approximations are probabilities corresponding to discrete space locations and orientation angles. The framework of alternating-direction methods enables us to update the numerical solution in parallel by solving N evolution equations on the sphere and M three-dimensional advection equations in each (pseudo-)time step. To ensure positivity preservation as well as the normalization property of the probability density, we perform algebraic flux correction for each equation and synchronize the correction factors corresponding to different orientation angles. The velocity field for the spatial advection step is obtained using a Schur complement method to solve a generalized system of the incompressible Navier–Stokes equations (NSE). Fiber-induced subgrid-scale effects are taken into account using an effective stress tensor that depends on the second- and fourth-order moments of the orientation density function. Numerical studies are performed for individual subproblems and for the coupled FPE-NSE system.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2023-0017","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We consider the Fokker–Planck equation (FPE) for the orientation probability density of fiber suspensions. Using the continuous Galerkin method, we express the numerical solution in terms of Lagrange basis functions that are associated with N nodes of a computational mesh for a domain in the 3D physical space and M nodes of a mesh for the surface of a unit sphere representing the configuration space. The NM time-dependent unknowns of our finite element approximations are probabilities corresponding to discrete space locations and orientation angles. The framework of alternating-direction methods enables us to update the numerical solution in parallel by solving N evolution equations on the sphere and M three-dimensional advection equations in each (pseudo-)time step. To ensure positivity preservation as well as the normalization property of the probability density, we perform algebraic flux correction for each equation and synchronize the correction factors corresponding to different orientation angles. The velocity field for the spatial advection step is obtained using a Schur complement method to solve a generalized system of the incompressible Navier–Stokes equations (NSE). Fiber-induced subgrid-scale effects are taken into account using an effective stress tensor that depends on the second- and fourth-order moments of the orientation density function. Numerical studies are performed for individual subproblems and for the coupled FPE-NSE system.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.