Abstract The Keller-Segel-Navier-Stokes system governs chemotaxis in liquid environments. This system is to be solved for the organism and chemoattractant densities and for the fluid velocity and pressure. It is known that if the total initial organism density mass is below 2 π there exist globally defined generalised solutions, but what is less understood is whether there are blow-up solutions beyond such a threshold and its optimality. Motivated by this issue, a numerical blow-up scenario is investigated. Approximate solutions computed via a stabilised finite element method founded on a shock capturing technique are such that they satisfy a priori bounds as well as lower and L 1 (Ω) bounds for the organism and chemoattractant densities. In particular, these latter properties are essential in detecting numerical blow-up configurations, since the non-satisfaction of these two requirements might trigger numerical oscillations leading to non-realistic finite-time collapses into persistent Dirac-type measures. Our findings show that the existence threshold value 2 π encountered for the organism density mass may not be optimal and hence it is conjectured that the critical threshold value 4 π may be inherited from the fluid-free Keller-Segel equations. Additionally it is observed that the formation of singular points can be neglected if the fluid flow is intensified.
{"title":"Exploring numerical blow-up phenomena for the Keller–Segel–Navier–Stokes equations","authors":"Jesús Bonilla, Juan Vicente Gutiérrez-Santacreu","doi":"10.1515/jnma-2023-0016","DOIUrl":"https://doi.org/10.1515/jnma-2023-0016","url":null,"abstract":"Abstract The Keller-Segel-Navier-Stokes system governs chemotaxis in liquid environments. This system is to be solved for the organism and chemoattractant densities and for the fluid velocity and pressure. It is known that if the total initial organism density mass is below 2 π there exist globally defined generalised solutions, but what is less understood is whether there are blow-up solutions beyond such a threshold and its optimality. Motivated by this issue, a numerical blow-up scenario is investigated. Approximate solutions computed via a stabilised finite element method founded on a shock capturing technique are such that they satisfy a priori bounds as well as lower and L 1 (Ω) bounds for the organism and chemoattractant densities. In particular, these latter properties are essential in detecting numerical blow-up configurations, since the non-satisfaction of these two requirements might trigger numerical oscillations leading to non-realistic finite-time collapses into persistent Dirac-type measures. Our findings show that the existence threshold value 2 π encountered for the organism density mass may not be optimal and hence it is conjectured that the critical threshold value 4 π may be inherited from the fluid-free Keller-Segel equations. Additionally it is observed that the formation of singular points can be neglected if the fluid flow is intensified.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"295 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136114648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philipp Bringmann, Carsten Carstensen, Julian Streitberger
Abstract The symmetric 0 interior penalty method is one of the most popular discontinuous Galerkin methods for the biharmonic equation. This paper introduces an automatic local selection of the involved stability parameter in terms of the geometry of the underlying triangulation for arbitrary polynomial degrees. The proposed choice ensures a stable discretization with guaranteed discrete ellipticity constant. Numerical evidence for uniform and adaptive mesh-refinement and various polynomial degrees supports the reliability and efficiency of the local parameter selection and recommends this in practice. The approach is documented in 2D for triangles, but the methodology behind can be generalized to higher dimensions, to non-uniform polynomial degrees, and to rectangular discretizations. An appendix presents the realization of our proposed parameter selection in various established finite element software packages. a detailed documentation of C 0 interior penalty method in.
{"title":"Local parameter selection in the C<sup>0</sup> interior penalty method for the biharmonic equation","authors":"Philipp Bringmann, Carsten Carstensen, Julian Streitberger","doi":"10.1515/jnma-2023-0028","DOIUrl":"https://doi.org/10.1515/jnma-2023-0028","url":null,"abstract":"Abstract The symmetric 0 interior penalty method is one of the most popular discontinuous Galerkin methods for the biharmonic equation. This paper introduces an automatic local selection of the involved stability parameter in terms of the geometry of the underlying triangulation for arbitrary polynomial degrees. The proposed choice ensures a stable discretization with guaranteed discrete ellipticity constant. Numerical evidence for uniform and adaptive mesh-refinement and various polynomial degrees supports the reliability and efficiency of the local parameter selection and recommends this in practice. The approach is documented in 2D for triangles, but the methodology behind can be generalized to higher dimensions, to non-uniform polynomial degrees, and to rectangular discretizations. An appendix presents the realization of our proposed parameter selection in various established finite element software packages. a detailed documentation of C 0 interior penalty method in.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"130 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135979905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We prove a discrete version of the famous Sobolev inequalities [1] in R d for d ∈ N ∗ , p ∈ [ 1 , + ∞ [ $mathbb{R}^{d} text { for } d in mathbb{N}^{*}, p in[1,+infty[$ for general non orthogonal meshes with possibly non convex cells. We follow closely the proof of the continuous Sobolev inequality based on the embedding of B V R d into L d d − 1 $B Vleft(mathbb{R}^{d}right) text { into } mathrm{L}^{frac{d}{d-1}}$ [1, theorem 9.9],[12, theorem 1.1] by introducing discrete analogs of the directional total variations. In the case p > d (Gagliardo-Nirenberg inequality), we adapt the proof of the continuous case ( [1, theorem 9.9], [9, theorem 4.8]) and use techniques from [3, 5]. In the case p > d (Morrey’s inequality), we simplify and extend the proof of [12, theorem 1.1] to more general meshes.
摘要本文证明了著名的Sobolev不等式[1]在rd中的离散形式,对于可能具有非凸单元的一般非正交网格,对于d∈N∗,p∈[1,+∞[$mathbb{R}^{d} text { for } d in mathbb{N}^{*}, p in[1,+infty[$。我们通过引入定向总变分的离散类比,密切关注基于bv R d嵌入到ld d−1 $B Vleft(mathbb{R}^{d}right) text { into } mathrm{L}^{frac{d}{d-1}}$[1,定理9.9],[12,定理1.1]的连续Sobolev不等式的证明。在p b> d (Gagliardo-Nirenberg不等式)的情况下,我们采用连续情况([1,定理9.9],[9,定理4.8])的证明,并使用[3,5]中的技术。在p b> d (Morrey’s不等式)的情况下,我们将[12,定理1.1]的证明简化并推广到更一般的网格。
{"title":"On the discrete Sobolev inequalities","authors":"Sédrick Kameni Ngwamou, Michael Ndjinga","doi":"10.1515/jnma-2023-0086","DOIUrl":"https://doi.org/10.1515/jnma-2023-0086","url":null,"abstract":"Abstract We prove a discrete version of the famous Sobolev inequalities [1] in R d for d ∈ N ∗ , p ∈ [ 1 , + ∞ [ $mathbb{R}^{d} text { for } d in mathbb{N}^{*}, p in[1,+infty[$ for general non orthogonal meshes with possibly non convex cells. We follow closely the proof of the continuous Sobolev inequality based on the embedding of B V R d into L d d − 1 $B Vleft(mathbb{R}^{d}right) text { into } mathrm{L}^{frac{d}{d-1}}$ [1, theorem 9.9],[12, theorem 1.1] by introducing discrete analogs of the directional total variations. In the case p > d (Gagliardo-Nirenberg inequality), we adapt the proof of the continuous case ( [1, theorem 9.9], [9, theorem 4.8]) and use techniques from [3, 5]. In the case p > d (Morrey’s inequality), we simplify and extend the proof of [12, theorem 1.1] to more general meshes.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"66 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80063195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The scalar auxiliary variable (SAV) approach of Shen et al. (2018), which presents a novel way to discretize a large class of gradient flows, has been extended and improved by many authors for general dissipative systems. In this work we consider a Cahn–Hilliard system with mass source that, for image processing and biological applications, may not admit a dissipative structure involving the Ginzburg–Landau energy. Hence, compared to previous works, the stability of SAV-discrete solutions for such systems is not immediate. We establish, with a bounded mass source, stability and convergence of time discrete solutions for a first-order relaxed SAV scheme in the sense of Jiang et al. (2022), and apply our ideas to Cahn–Hilliard systems with mass source appearing in diblock co-polymer phase separation, tumor growth, image inpainting and segmentation.
{"title":"Stability and convergence of relaxed scalar auxiliary variable schemes for Cahn–Hilliard systems with bounded mass source","authors":"K. F. Lam, Ru Wang","doi":"10.1515/jnma-2023-0021","DOIUrl":"https://doi.org/10.1515/jnma-2023-0021","url":null,"abstract":"Abstract The scalar auxiliary variable (SAV) approach of Shen et al. (2018), which presents a novel way to discretize a large class of gradient flows, has been extended and improved by many authors for general dissipative systems. In this work we consider a Cahn–Hilliard system with mass source that, for image processing and biological applications, may not admit a dissipative structure involving the Ginzburg–Landau energy. Hence, compared to previous works, the stability of SAV-discrete solutions for such systems is not immediate. We establish, with a bounded mass source, stability and convergence of time discrete solutions for a first-order relaxed SAV scheme in the sense of Jiang et al. (2022), and apply our ideas to Cahn–Hilliard systems with mass source appearing in diblock co-polymer phase separation, tumor growth, image inpainting and segmentation.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"30 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83313876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bosco García-Archilla, Volker John, Sarah Katz, Julia Novo
Abstract Reduced order methods (ROMs) for the incompressible Navier–Stokes equations, based on proper orthogonal decomposition (POD), are studied that include snapshots which approach the temporal derivative of the velocity from a full order mixed finite element method (FOM). In addition, the set of snapshots contains the mean velocity of the FOM. Both the FOM and the POD-ROM are equipped with a grad-div stabilization. A velocity error analysis for this method can be found already in the literature. The present paper studies two different procedures to compute approximations to the pressure and proves error bounds for the pressure that are independent of inverse powers of the viscosity. Numerical studies support the analytic results and compare both methods.
{"title":"POD-ROMs for incompressible flows including snapshots of the temporal derivative of the full order solution: Error bounds for the pressure","authors":"Bosco García-Archilla, Volker John, Sarah Katz, Julia Novo","doi":"10.1515/jnma-2023-0039","DOIUrl":"https://doi.org/10.1515/jnma-2023-0039","url":null,"abstract":"Abstract Reduced order methods (ROMs) for the incompressible Navier–Stokes equations, based on proper orthogonal decomposition (POD), are studied that include snapshots which approach the temporal derivative of the velocity from a full order mixed finite element method (FOM). In addition, the set of snapshots contains the mean velocity of the FOM. Both the FOM and the POD-ROM are equipped with a grad-div stabilization. A velocity error analysis for this method can be found already in the literature. The present paper studies two different procedures to compute approximations to the pressure and proves error bounds for the pressure that are independent of inverse powers of the viscosity. Numerical studies support the analytic results and compare both methods.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135181307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We consider the Fokker–Planck equation (FPE) for the orientation probability density of fiber suspensions. Using the continuous Galerkin method, we express the numerical solution in terms of Lagrange basis functions that are associated with N nodes of a computational mesh for a domain in the 3D physical space and M nodes of a mesh for the surface of a unit sphere representing the configuration space. The NM time-dependent unknowns of our finite element approximations are probabilities corresponding to discrete space locations and orientation angles. The framework of alternating-direction methods enables us to update the numerical solution in parallel by solving N evolution equations on the sphere and M three-dimensional advection equations in each (pseudo-)time step. To ensure positivity preservation as well as the normalization property of the probability density, we perform algebraic flux correction for each equation and synchronize the correction factors corresponding to different orientation angles. The velocity field for the spatial advection step is obtained using a Schur complement method to solve a generalized system of the incompressible Navier–Stokes equations (NSE). Fiber-induced subgrid-scale effects are taken into account using an effective stress tensor that depends on the second- and fourth-order moments of the orientation density function. Numerical studies are performed for individual subproblems and for the coupled FPE-NSE system.
{"title":"Efficient numerical solution of the Fokker-Planck equation using physics-conforming finite element methods","authors":"Katharina Wegener, D. Kuzmin, S. Turek","doi":"10.1515/jnma-2023-0017","DOIUrl":"https://doi.org/10.1515/jnma-2023-0017","url":null,"abstract":"Abstract We consider the Fokker–Planck equation (FPE) for the orientation probability density of fiber suspensions. Using the continuous Galerkin method, we express the numerical solution in terms of Lagrange basis functions that are associated with N nodes of a computational mesh for a domain in the 3D physical space and M nodes of a mesh for the surface of a unit sphere representing the configuration space. The NM time-dependent unknowns of our finite element approximations are probabilities corresponding to discrete space locations and orientation angles. The framework of alternating-direction methods enables us to update the numerical solution in parallel by solving N evolution equations on the sphere and M three-dimensional advection equations in each (pseudo-)time step. To ensure positivity preservation as well as the normalization property of the probability density, we perform algebraic flux correction for each equation and synchronize the correction factors corresponding to different orientation angles. The velocity field for the spatial advection step is obtained using a Schur complement method to solve a generalized system of the incompressible Navier–Stokes equations (NSE). Fiber-induced subgrid-scale effects are taken into account using an effective stress tensor that depends on the second- and fourth-order moments of the orientation density function. Numerical studies are performed for individual subproblems and for the coupled FPE-NSE system.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"30 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83622041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Here, we extend the finite distortion problem from bounded domains in ℝ2 to closed genus-zero surfaces in ℝ3 by a stereographic projection. Then, we derive a theoretical foundation for spherical equiareal parameterization between a simply connected closed surface M and a unit sphere 𝕊2 by minimizing the total area distortion energy on ̅ℂ. After the minimizer of the total area distortion energy is determined, it is combined with an initial conformal map to determine the equiareal map between the extended planes. From the inverse stereographic projection, we derive the equiareal map between M and 𝕊2. The total area distortion energy is rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres and is decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization function for the computation of spherical equiareal parameterization between M and 𝕊2. In addition, under relatively mild conditions, we verify that our proposed algorithm has asymptotic R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate that the assumptions for convergence always hold and indicate the efficiency, reliability, and robustness of the developed modified stretch energy minimization function.
{"title":"Fundamental Theory and R-linear Convergence of Stretch Energy Minimization for Spherical Equiareal Parameterization","authors":"Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin","doi":"10.1515/jnma-2022-0072","DOIUrl":"https://doi.org/10.1515/jnma-2022-0072","url":null,"abstract":"Abstract Here, we extend the finite distortion problem from bounded domains in ℝ2 to closed genus-zero surfaces in ℝ3 by a stereographic projection. Then, we derive a theoretical foundation for spherical equiareal parameterization between a simply connected closed surface M and a unit sphere 𝕊2 by minimizing the total area distortion energy on ̅ℂ. After the minimizer of the total area distortion energy is determined, it is combined with an initial conformal map to determine the equiareal map between the extended planes. From the inverse stereographic projection, we derive the equiareal map between M and 𝕊2. The total area distortion energy is rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres and is decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization function for the computation of spherical equiareal parameterization between M and 𝕊2. In addition, under relatively mild conditions, we verify that our proposed algorithm has asymptotic R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate that the assumptions for convergence always hold and indicate the efficiency, reliability, and robustness of the developed modified stretch energy minimization function.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"13 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75867682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Arndt, W. Bangerth, Maximilian Bergbauer, Marco Feder, M. Fehling, Johannes Heinz, T. Heister, L. Heltai, M. Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Bruno Turcksin, David R. Wells, S. Zampini
Abstract This paper provides an overview of the new features of the finite element library deal.II, version 9.5.
摘要本文概述了有限元库协议的新特点。II,版本9.5。
{"title":"The deal.II Library, Version 9.5","authors":"D. Arndt, W. Bangerth, Maximilian Bergbauer, Marco Feder, M. Fehling, Johannes Heinz, T. Heister, L. Heltai, M. Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Bruno Turcksin, David R. Wells, S. Zampini","doi":"10.1515/jnma-2023-0089","DOIUrl":"https://doi.org/10.1515/jnma-2023-0089","url":null,"abstract":"Abstract This paper provides an overview of the new features of the finite element library deal.II, version 9.5.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"67 1","pages":"231 - 246"},"PeriodicalIF":3.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79845223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This paper presents a posteriori error estimate for the weak Galerkin (WG) finite element method used to solve H(curl)-elliptic problems. Firstly, we introduce a WG method for solving H(curl)-elliptic problems and a corresponding residual type error estimator without a stabilization term. Secondly, we establish the reliability of the error estimator by demonstrating that the stabilization term is controlled by the error estimator. We also evaluate the efficiency of the error estimator using standard bubble functions. Finally, we present some numerical results to show the performances of the error estimator in both uniform and adaptive meshes.
{"title":"A posteriori error estimate for a WG method of H(curl)-elliptic problems","authors":"J. Peng, Yingying Xie, L. Zhong","doi":"10.1515/jnma-2023-0014","DOIUrl":"https://doi.org/10.1515/jnma-2023-0014","url":null,"abstract":"Abstract This paper presents a posteriori error estimate for the weak Galerkin (WG) finite element method used to solve H(curl)-elliptic problems. Firstly, we introduce a WG method for solving H(curl)-elliptic problems and a corresponding residual type error estimator without a stabilization term. Secondly, we establish the reliability of the error estimator by demonstrating that the stabilization term is controlled by the error estimator. We also evaluate the efficiency of the error estimator using standard bubble functions. Finally, we present some numerical results to show the performances of the error estimator in both uniform and adaptive meshes.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"13 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75011531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}