首页 > 最新文献

Journal of Numerical Mathematics最新文献

英文 中文
Effective highly accurate time integrators for linear Klein–Gordon equations across the scales 跨尺度线性克莱因-戈登方程的有效高精度时间积分器
IF 3 2区 数学 Q1 MATHEMATICS Pub Date : 2024-09-11 DOI: 10.1515/jnma-2023-0070
Karolina Kropielnicka, Karolina Lademann, Katharina Schratz
We propose an efficient approach for time integration of Klein–Gordon equations with highly oscillatory in time input terms. The new methods are highly accurate in the entire range, from slowly varying up to highly oscillatory regimes. Our approach is based on splitting methods tailored to the structure of the input term which allows us to resolve the oscillations in the system uniformly in all frequencies, while the error constant does not grow as the oscillations increase. Numerical experiments highlight our theoretical findings and demonstrate the efficiency of the new schemes.
我们提出了一种高效方法,用于对具有高度振荡时间输入项的克莱因-戈登方程进行时间积分。新方法在从缓慢变化到高度振荡的整个范围内都非常精确。我们的方法基于针对输入项结构量身定制的分裂方法,这使我们能够在所有频率上均匀地解决系统中的振荡问题,同时误差常数不会随着振荡的增加而增长。数值实验凸显了我们的理论发现,并证明了新方案的效率。
{"title":"Effective highly accurate time integrators for linear Klein–Gordon equations across the scales","authors":"Karolina Kropielnicka, Karolina Lademann, Katharina Schratz","doi":"10.1515/jnma-2023-0070","DOIUrl":"https://doi.org/10.1515/jnma-2023-0070","url":null,"abstract":"We propose an efficient approach for time integration of Klein–Gordon equations with highly oscillatory in time input terms. The new methods are highly accurate in the entire range, from slowly varying up to highly oscillatory regimes. Our approach is based on splitting methods tailored to the structure of the input term which allows us to resolve the oscillations in the system uniformly in all frequencies, while the error constant does not grow as the oscillations increase. Numerical experiments highlight our theoretical findings and demonstrate the efficiency of the new schemes.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obituary for Professor Yuri Kuznetsov 尤里-库兹涅佐夫教授讣告
IF 3 2区 数学 Q1 Mathematics Pub Date : 2024-06-01 DOI: 10.1515/jnma-2024-1078
{"title":"Obituary for Professor Yuri Kuznetsov","authors":"","doi":"10.1515/jnma-2024-1078","DOIUrl":"https://doi.org/10.1515/jnma-2024-1078","url":null,"abstract":"","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and Computation of a Weak Galerkin Scheme for Solving the 2D/3D Stationary Stokes Interface Problems with High-Order Elements 用高阶元素解决二维/三维静态斯托克斯界面问题的弱 Galerkin 方案的分析与计算
IF 3 2区 数学 Q1 Mathematics Pub Date : 2024-04-04 DOI: 10.1515/jnma-2023-0112
Raman Kumar, Bhupen Deka
In this paper, we present a high-order weak Galerkin finite element method (WG-FEM) for solving the stationary Stokes interface problems with discontinuous velocity and pressure in ℝ d (d = 2, 3). This WG method is equipped with stable finite elements consisting of usual polynomials of degree k ≥ 1 for the velocity and polynomials of degree k – 1 for the pressure, both are discontinuous. Optimal convergence rates of order k + 1 for the velocity and order k for the pressure are established in L 2-norm on hybrid meshes. Numerical experiments verify the expected order of accuracy for both two-dimensional and three-dimensional examples. Moreover, numerically it is shown that the proposed WG algorithm is able to accommodate geometrically complicated and very irregular interfaces having sharp edges, cusps, and tips.
本文提出了一种高阶弱 Galerkin 有限元方法 (WG-FEM),用于求解速度和压力在 ℝ d (d = 2, 3) 中不连续的斯托克斯静止界面问题。这种 WG 方法配备了稳定的有限元,其中速度由 k ≥ 1 阶的普通多项式组成,压力由 k - 1 阶的多项式组成,两者都是不连续的。在混合网格的 L 2 规范下,速度和压力的最佳收敛率分别为 k + 1 阶和 k 阶。数值实验验证了二维和三维实例的预期精度。此外,数值结果表明,所提出的 WG 算法能够适应具有尖锐边缘、尖角和尖端的复杂和非常不规则的几何界面。
{"title":"Analysis and Computation of a Weak Galerkin Scheme for Solving the 2D/3D Stationary Stokes Interface Problems with High-Order Elements","authors":"Raman Kumar, Bhupen Deka","doi":"10.1515/jnma-2023-0112","DOIUrl":"https://doi.org/10.1515/jnma-2023-0112","url":null,"abstract":"In this paper, we present a high-order weak Galerkin finite element method (WG-FEM) for solving the stationary Stokes interface problems with discontinuous velocity and pressure in ℝ<jats:sup> <jats:italic>d</jats:italic> </jats:sup> (<jats:italic>d</jats:italic> = 2, 3). This WG method is equipped with stable finite elements consisting of usual polynomials of degree <jats:italic>k</jats:italic> ≥ 1 for the velocity and polynomials of degree <jats:italic>k</jats:italic> – 1 for the pressure, both are discontinuous. Optimal convergence rates of order <jats:italic>k</jats:italic> + 1 for the velocity and order <jats:italic>k</jats:italic> for the pressure are established in <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>-norm on hybrid meshes. Numerical experiments verify the expected order of accuracy for both two-dimensional and three-dimensional examples. Moreover, numerically it is shown that the proposed WG algorithm is able to accommodate geometrically complicated and very irregular interfaces having sharp edges, cusps, and tips.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal evaluation of symmetry-adapted n-correlations via recursive contraction of sparse symmetric tensors 通过稀疏对称张量的递归收缩优化对称适配 n 相关性评估
IF 3 2区 数学 Q1 Mathematics Pub Date : 2024-03-30 DOI: 10.1515/jnma-2024-0025
Illia Kaliuzhnyi, Christoph Ortner
We present a comprehensive analysis of an algorithm for evaluating high-dimensional polynomials that are invariant (or equi-variant) under permutations and rotations. This task arises in the evaluation linear models as well as equivariant neural network models of many-particle systems. The theoretical bottleneck is the contraction of a high-dimensional symmetric and sparse tensor with a specific sparsity pattern that is directly related to the symmetries imposed on the polynomial. The sparsity of this tensor makes it challenging to construct a highly efficient evaluation scheme. The references [10, 11] introduced a recursive evaluation strategy that relied on a number of heuristics, but performed well in tests. In the present work, we propose an explicit construction of such a recursive evaluation strategy and show that it is in fact optimal in the limit of infinite polynomial degree.
我们全面分析了一种用于评估在排列和旋转下不变(或等变)的高维多项式的算法。这项任务出现在多粒子系统的线性模型和等变神经网络模型的评估中。理论上的瓶颈在于高维对称稀疏张量的收缩,这种张量具有特定的稀疏性模式,与多项式的对称性直接相关。这种张量的稀疏性使得构建一个高效的评估方案具有挑战性。参考文献[10, 11]介绍了一种递归评估策略,它依赖于一些启发式方法,但在测试中表现良好。在本研究中,我们提出了这种递归评估策略的明确构造,并证明它在无限多项式度的极限中实际上是最优的。
{"title":"Optimal evaluation of symmetry-adapted n-correlations via recursive contraction of sparse symmetric tensors","authors":"Illia Kaliuzhnyi, Christoph Ortner","doi":"10.1515/jnma-2024-0025","DOIUrl":"https://doi.org/10.1515/jnma-2024-0025","url":null,"abstract":"We present a comprehensive analysis of an algorithm for evaluating high-dimensional polynomials that are invariant (or equi-variant) under permutations and rotations. This task arises in the evaluation linear models as well as equivariant neural network models of many-particle systems. The theoretical bottleneck is the contraction of a high-dimensional symmetric and sparse tensor with a specific sparsity pattern that is directly related to the symmetries imposed on the polynomial. The sparsity of this tensor makes it challenging to construct a highly efficient evaluation scheme. The references [10, 11] introduced a recursive evaluation strategy that relied on a number of heuristics, but performed well in tests. In the present work, we propose an explicit construction of such a recursive evaluation strategy and show that it is in fact optimal in the limit of infinite polynomial degree.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fully well-balanced hydrodynamic reconstruction 完全平衡的水动力重建
IF 3 2区 数学 Q1 Mathematics Pub Date : 2024-03-25 DOI: 10.1515/jnma-2023-0065
Christophe Berthon, Victor Michel-Dansac
The present work focuses on the numerical approximation of the weak solutions of the shallow water model over a non-flat topography. In particular, we pay close attention to steady solutions with nonzero velocity. The goal of this work is to derive a scheme that exactly preserves these stationary solutions, as well as the commonly preserved lake at rest steady solution. These moving steady states are solution to a nonlinear equation. We emphasize that the method proposed here never requires solving this nonlinear equation; instead, a suitable linearization is derived. To address this issue, we propose an extension of the well-known hydrostatic reconstruction. By appropriately defining the reconstructed states at the interfaces, any numerical flux function, combined with a relevant source term discretization, produces a well-balanced scheme that preserves both moving and non-moving steady solutions. This eliminates the need to construct specific numerical fluxes. Additionally, we prove that the resulting scheme is consistent with the homogeneous system on flat topographies, and that it reduces to the hydrostatic reconstruction when the velocity vanishes. To increase the accuracy of the simulations, we propose a well-balanced high-order procedure, which still does not require solving any nonlinear equation. Several numerical experiments demonstrate the effectiveness of the numerical scheme.
本研究的重点是非平坦地形上浅水模型弱解的数值近似。我们尤其关注速度不为零的稳定解。这项工作的目标是推导出一种方案,精确保留这些静止解以及通常保留的湖泊静止稳定解。这些移动稳态是非线性方程的解。我们强调,这里提出的方法从来不需要求解这个非线性方程;相反,我们会推导出一个合适的线性化方案。为了解决这个问题,我们提出了对著名的流体静力学重构的扩展。通过适当定义界面上的重构状态,任何数值通量函数与相关源项离散化相结合,都能产生一个很好的平衡方案,同时保留运动和非运动的稳定解。这样就无需构建特定的数值通量。此外,我们还证明了所产生的方案与平坦地形上的均质系统是一致的,而且当速度消失时,它还原为流体静力学重构。为了提高模拟的精确度,我们提出了一种平衡良好的高阶程序,它仍然不需要求解任何非线性方程。几个数值实验证明了该数值方案的有效性。
{"title":"A fully well-balanced hydrodynamic reconstruction","authors":"Christophe Berthon, Victor Michel-Dansac","doi":"10.1515/jnma-2023-0065","DOIUrl":"https://doi.org/10.1515/jnma-2023-0065","url":null,"abstract":"The present work focuses on the numerical approximation of the weak solutions of the shallow water model over a non-flat topography. In particular, we pay close attention to steady solutions with nonzero velocity. The goal of this work is to derive a scheme that exactly preserves these stationary solutions, as well as the commonly preserved lake at rest steady solution. These moving steady states are solution to a nonlinear equation. We emphasize that the method proposed here never requires solving this nonlinear equation; instead, a suitable linearization is derived. To address this issue, we propose an extension of the well-known hydrostatic reconstruction. By appropriately defining the reconstructed states at the interfaces, any numerical flux function, combined with a relevant source term discretization, produces a well-balanced scheme that preserves both moving and non-moving steady solutions. This eliminates the need to construct specific numerical fluxes. Additionally, we prove that the resulting scheme is consistent with the homogeneous system on flat topographies, and that it reduces to the hydrostatic reconstruction when the velocity vanishes. To increase the accuracy of the simulations, we propose a well-balanced high-order procedure, which still does not require solving any nonlinear equation. Several numerical experiments demonstrate the effectiveness of the numerical scheme.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140297416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring numerical blow-up phenomena for the Keller–Segel–Navier–Stokes equations 探索Keller-Segel-Navier-Stokes方程的数值爆破现象
2区 数学 Q1 Mathematics Pub Date : 2023-10-16 DOI: 10.1515/jnma-2023-0016
Jesús Bonilla, Juan Vicente Gutiérrez-Santacreu
Abstract The Keller-Segel-Navier-Stokes system governs chemotaxis in liquid environments. This system is to be solved for the organism and chemoattractant densities and for the fluid velocity and pressure. It is known that if the total initial organism density mass is below 2 π there exist globally defined generalised solutions, but what is less understood is whether there are blow-up solutions beyond such a threshold and its optimality. Motivated by this issue, a numerical blow-up scenario is investigated. Approximate solutions computed via a stabilised finite element method founded on a shock capturing technique are such that they satisfy a priori bounds as well as lower and L 1 (Ω) bounds for the organism and chemoattractant densities. In particular, these latter properties are essential in detecting numerical blow-up configurations, since the non-satisfaction of these two requirements might trigger numerical oscillations leading to non-realistic finite-time collapses into persistent Dirac-type measures. Our findings show that the existence threshold value 2 π encountered for the organism density mass may not be optimal and hence it is conjectured that the critical threshold value 4 π may be inherited from the fluid-free Keller-Segel equations. Additionally it is observed that the formation of singular points can be neglected if the fluid flow is intensified.
Keller-Segel-Navier-Stokes系统控制着液体环境中的趋化性。该系统需要求解生物体和化学引诱剂密度以及流体速度和压力。已知如果总初始生物密度质量低于2 π,则存在全局定义的广义解,但不太了解的是是否存在超过该阈值的爆破解及其最优性。基于这一问题,本文研究了一个数值爆破场景。通过建立在冲击捕获技术基础上的稳定有限元方法计算的近似解是这样的,它们满足生物体和化学引诱剂密度的先验边界以及下限和l1 (Ω)边界。特别是,后两种性质对于探测数值爆破构型至关重要,因为不满足这两种要求可能引发数值振荡,导致非现实的有限时间坍缩为持久的狄拉克型测量。我们的研究结果表明,生物密度质量遇到的存在阈值2 π可能不是最优的,因此推测临界阈值4 π可能继承自无流体的Keller-Segel方程。此外,还观察到,如果流体流动加剧,奇点的形成可以忽略不计。
{"title":"Exploring numerical blow-up phenomena for the Keller–Segel–Navier–Stokes equations","authors":"Jesús Bonilla, Juan Vicente Gutiérrez-Santacreu","doi":"10.1515/jnma-2023-0016","DOIUrl":"https://doi.org/10.1515/jnma-2023-0016","url":null,"abstract":"Abstract The Keller-Segel-Navier-Stokes system governs chemotaxis in liquid environments. This system is to be solved for the organism and chemoattractant densities and for the fluid velocity and pressure. It is known that if the total initial organism density mass is below 2 π there exist globally defined generalised solutions, but what is less understood is whether there are blow-up solutions beyond such a threshold and its optimality. Motivated by this issue, a numerical blow-up scenario is investigated. Approximate solutions computed via a stabilised finite element method founded on a shock capturing technique are such that they satisfy a priori bounds as well as lower and L 1 (Ω) bounds for the organism and chemoattractant densities. In particular, these latter properties are essential in detecting numerical blow-up configurations, since the non-satisfaction of these two requirements might trigger numerical oscillations leading to non-realistic finite-time collapses into persistent Dirac-type measures. Our findings show that the existence threshold value 2 π encountered for the organism density mass may not be optimal and hence it is conjectured that the critical threshold value 4 π may be inherited from the fluid-free Keller-Segel equations. Additionally it is observed that the formation of singular points can be neglected if the fluid flow is intensified.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136114648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local parameter selection in the C0 interior penalty method for the biharmonic equation 双调和方程C0内罚法的局部参数选择
2区 数学 Q1 Mathematics Pub Date : 2023-09-11 DOI: 10.1515/jnma-2023-0028
Philipp Bringmann, Carsten Carstensen, Julian Streitberger
Abstract The symmetric 0 interior penalty method is one of the most popular discontinuous Galerkin methods for the biharmonic equation. This paper introduces an automatic local selection of the involved stability parameter in terms of the geometry of the underlying triangulation for arbitrary polynomial degrees. The proposed choice ensures a stable discretization with guaranteed discrete ellipticity constant. Numerical evidence for uniform and adaptive mesh-refinement and various polynomial degrees supports the reliability and efficiency of the local parameter selection and recommends this in practice. The approach is documented in 2D for triangles, but the methodology behind can be generalized to higher dimensions, to non-uniform polynomial degrees, and to rectangular discretizations. An appendix presents the realization of our proposed parameter selection in various established finite element software packages. a detailed documentation of C 0 interior penalty method in.
对称0内罚法是求解双调和方程最常用的不连续Galerkin方法之一。本文介绍了一种根据任意多项式次下三角剖分的几何形状自动局部选择所涉及的稳定性参数的方法。所提出的选择保证了离散椭圆常数的稳定离散化。均匀自适应网格细化和不同多项式度的数值证据支持了局部参数选择的可靠性和有效性,并在实践中得到了推广。该方法在二维三角形中有文档记录,但背后的方法可以推广到更高的维度,非均匀多项式度和矩形离散化。附录给出了我们提出的参数选择在各种已建立的有限元软件包中的实现。详细说明了c0内部处罚的方法。
{"title":"Local parameter selection in the C<sup>0</sup> interior penalty method for the biharmonic equation","authors":"Philipp Bringmann, Carsten Carstensen, Julian Streitberger","doi":"10.1515/jnma-2023-0028","DOIUrl":"https://doi.org/10.1515/jnma-2023-0028","url":null,"abstract":"Abstract The symmetric 0 interior penalty method is one of the most popular discontinuous Galerkin methods for the biharmonic equation. This paper introduces an automatic local selection of the involved stability parameter in terms of the geometry of the underlying triangulation for arbitrary polynomial degrees. The proposed choice ensures a stable discretization with guaranteed discrete ellipticity constant. Numerical evidence for uniform and adaptive mesh-refinement and various polynomial degrees supports the reliability and efficiency of the local parameter selection and recommends this in practice. The approach is documented in 2D for triangles, but the methodology behind can be generalized to higher dimensions, to non-uniform polynomial degrees, and to rectangular discretizations. An appendix presents the realization of our proposed parameter selection in various established finite element software packages. a detailed documentation of C 0 interior penalty method in.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135979905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the discrete Sobolev inequalities 关于离散Sobolev不等式
IF 3 2区 数学 Q1 Mathematics Pub Date : 2023-09-05 DOI: 10.1515/jnma-2023-0086
Sédrick Kameni Ngwamou, Michael Ndjinga
Abstract We prove a discrete version of the famous Sobolev inequalities [1] in R d for d ∈ N ∗ , p ∈ [ 1 , + ∞ [ $mathbb{R}^{d} text { for } d in mathbb{N}^{*}, p in[1,+infty[$ for general non orthogonal meshes with possibly non convex cells. We follow closely the proof of the continuous Sobolev inequality based on the embedding of B V R d into L d d − 1 $B Vleft(mathbb{R}^{d}right) text { into } mathrm{L}^{frac{d}{d-1}}$ [1, theorem 9.9],[12, theorem 1.1] by introducing discrete analogs of the directional total variations. In the case p > d (Gagliardo-Nirenberg inequality), we adapt the proof of the continuous case ( [1, theorem 9.9], [9, theorem 4.8]) and use techniques from [3, 5]. In the case p > d (Morrey’s inequality), we simplify and extend the proof of [12, theorem 1.1] to more general meshes.
摘要本文证明了著名的Sobolev不等式[1]在rd中的离散形式,对于可能具有非凸单元的一般非正交网格,对于d∈N∗,p∈[1,+∞[$mathbb{R}^{d} text { for } d in mathbb{N}^{*}, p in[1,+infty[$。我们通过引入定向总变分的离散类比,密切关注基于bv R d嵌入到ld d−1 $B Vleft(mathbb{R}^{d}right) text { into } mathrm{L}^{frac{d}{d-1}}$[1,定理9.9],[12,定理1.1]的连续Sobolev不等式的证明。在p b> d (Gagliardo-Nirenberg不等式)的情况下,我们采用连续情况([1,定理9.9],[9,定理4.8])的证明,并使用[3,5]中的技术。在p b> d (Morrey’s不等式)的情况下,我们将[12,定理1.1]的证明简化并推广到更一般的网格。
{"title":"On the discrete Sobolev inequalities","authors":"Sédrick Kameni Ngwamou, Michael Ndjinga","doi":"10.1515/jnma-2023-0086","DOIUrl":"https://doi.org/10.1515/jnma-2023-0086","url":null,"abstract":"Abstract We prove a discrete version of the famous Sobolev inequalities [1] in R d for d ∈ N ∗ , p ∈ [ 1 , + ∞ [ $mathbb{R}^{d} text { for } d in mathbb{N}^{*}, p in[1,+infty[$ for general non orthogonal meshes with possibly non convex cells. We follow closely the proof of the continuous Sobolev inequality based on the embedding of B V R d into L d d − 1 $B Vleft(mathbb{R}^{d}right) text { into } mathrm{L}^{frac{d}{d-1}}$ [1, theorem 9.9],[12, theorem 1.1] by introducing discrete analogs of the directional total variations. In the case p > d (Gagliardo-Nirenberg inequality), we adapt the proof of the continuous case ( [1, theorem 9.9], [9, theorem 4.8]) and use techniques from [3, 5]. In the case p > d (Morrey’s inequality), we simplify and extend the proof of [12, theorem 1.1] to more general meshes.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80063195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
2区 数学 Q1 Mathematics Pub Date : 2023-09-01 DOI: 10.1515/jnma-2023-frontmatter3
{"title":"Frontmatter","authors":"","doi":"10.1515/jnma-2023-frontmatter3","DOIUrl":"https://doi.org/10.1515/jnma-2023-frontmatter3","url":null,"abstract":"","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135200505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability and convergence of relaxed scalar auxiliary variable schemes for Cahn–Hilliard systems with bounded mass source 有界质量源Cahn-Hilliard系统松弛标量辅助变量格式的稳定性和收敛性
IF 3 2区 数学 Q1 Mathematics Pub Date : 2023-08-30 DOI: 10.1515/jnma-2023-0021
K. F. Lam, Ru Wang
Abstract The scalar auxiliary variable (SAV) approach of Shen et al. (2018), which presents a novel way to discretize a large class of gradient flows, has been extended and improved by many authors for general dissipative systems. In this work we consider a Cahn–Hilliard system with mass source that, for image processing and biological applications, may not admit a dissipative structure involving the Ginzburg–Landau energy. Hence, compared to previous works, the stability of SAV-discrete solutions for such systems is not immediate. We establish, with a bounded mass source, stability and convergence of time discrete solutions for a first-order relaxed SAV scheme in the sense of Jiang et al. (2022), and apply our ideas to Cahn–Hilliard systems with mass source appearing in diblock co-polymer phase separation, tumor growth, image inpainting and segmentation.
Shen等人(2018)的标量辅助变量(SAV)方法提出了一种新的方法来离散一大类梯度流,许多作者对其进行了扩展和改进,用于一般耗散系统。在这项工作中,我们考虑了一个具有质量源的卡恩-希利亚德系统,对于图像处理和生物应用,可能不承认涉及金兹堡-朗道能量的耗散结构。因此,与以前的工作相比,这种系统的sav离散解的稳定性不是立即的。我们建立了Jiang等人(2022)意义上的一阶松弛SAV方案的有界质量源的时间离散解的稳定性和收敛性,并将我们的思想应用于具有质量源的Cahn-Hilliard系统,该系统出现在双嵌段共聚物相分离、肿瘤生长、图像着色和分割中。
{"title":"Stability and convergence of relaxed scalar auxiliary variable schemes for Cahn–Hilliard systems with bounded mass source","authors":"K. F. Lam, Ru Wang","doi":"10.1515/jnma-2023-0021","DOIUrl":"https://doi.org/10.1515/jnma-2023-0021","url":null,"abstract":"Abstract The scalar auxiliary variable (SAV) approach of Shen et al. (2018), which presents a novel way to discretize a large class of gradient flows, has been extended and improved by many authors for general dissipative systems. In this work we consider a Cahn–Hilliard system with mass source that, for image processing and biological applications, may not admit a dissipative structure involving the Ginzburg–Landau energy. Hence, compared to previous works, the stability of SAV-discrete solutions for such systems is not immediate. We establish, with a bounded mass source, stability and convergence of time discrete solutions for a first-order relaxed SAV scheme in the sense of Jiang et al. (2022), and apply our ideas to Cahn–Hilliard systems with mass source appearing in diblock co-polymer phase separation, tumor growth, image inpainting and segmentation.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83313876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Numerical Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1