Minjeong Kim, J. Koo, Minjeong Kang, Juah Song, Chunjoong Kim
{"title":"Research Trend in Rock Salt Structured High Entropy Cathode","authors":"Minjeong Kim, J. Koo, Minjeong Kang, Juah Song, Chunjoong Kim","doi":"10.31613/ceramist.2022.25.1.06","DOIUrl":null,"url":null,"abstract":"Development of lithium-ion rechargeable batteries with high energy storage capability are required in timely manner. Recently, it has been experimentally and computationally proven that oxides with the disordered rock salt structure can be charged and discharged in the Li-ion battery system. In particular, the high entropy disordered rock salt cathode has unique structure property, where both Li-ion and transition metal are randomly located on the cation sites. Such disordering in metal sites can migrate the Li-ion in a percolating way albeit with sluggish kinetics. Therefore, the high entropy disordered rock salt structure has attracted great attention due to its high energy density and stable structure. In this paper, we introduce a simple and effective strategy in the selection of transition metals for high entropy cathodes to achieve desired electrochemical properties.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2022.25.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Development of lithium-ion rechargeable batteries with high energy storage capability are required in timely manner. Recently, it has been experimentally and computationally proven that oxides with the disordered rock salt structure can be charged and discharged in the Li-ion battery system. In particular, the high entropy disordered rock salt cathode has unique structure property, where both Li-ion and transition metal are randomly located on the cation sites. Such disordering in metal sites can migrate the Li-ion in a percolating way albeit with sluggish kinetics. Therefore, the high entropy disordered rock salt structure has attracted great attention due to its high energy density and stable structure. In this paper, we introduce a simple and effective strategy in the selection of transition metals for high entropy cathodes to achieve desired electrochemical properties.