Mathematical modeling of an inductive link for optimizing efficiency

Hussnain Ali, T. J. Ahmad, S. Khan
{"title":"Mathematical modeling of an inductive link for optimizing efficiency","authors":"Hussnain Ali, T. J. Ahmad, S. Khan","doi":"10.1109/ISIEA.2009.5356338","DOIUrl":null,"url":null,"abstract":"Design of an optimized RF transcutaneous link through inductive coils is an arduous design process which involves complex mathematical modeling to search for optimized design parameters. This paper presents a generalized model which encompasses all possible voltage driven circuit realizations of an inductive link and presents a comparison on the bases of link efficiency and voltage gain. Mathematical expressions for the generalized voltage driven model as well as for the equivalent circuit topologies are derived. Moreover effect of different parameters such as resonating impedances on the final relationships is exhaustively analyzed. Optimization is a critical aspect in designing inductive links for medical implants since the link virtually acts as an air-core transformer with relatively low mutual coupling. Therefore, in order to maximize the gain and improve the link efficiency it is very necessary to design the link on optimized parameters. Aim of the analysis is to facilitate the designers in their design process as mathematical relationships for different models and their comparison has never been reported earlier in literature.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Design of an optimized RF transcutaneous link through inductive coils is an arduous design process which involves complex mathematical modeling to search for optimized design parameters. This paper presents a generalized model which encompasses all possible voltage driven circuit realizations of an inductive link and presents a comparison on the bases of link efficiency and voltage gain. Mathematical expressions for the generalized voltage driven model as well as for the equivalent circuit topologies are derived. Moreover effect of different parameters such as resonating impedances on the final relationships is exhaustively analyzed. Optimization is a critical aspect in designing inductive links for medical implants since the link virtually acts as an air-core transformer with relatively low mutual coupling. Therefore, in order to maximize the gain and improve the link efficiency it is very necessary to design the link on optimized parameters. Aim of the analysis is to facilitate the designers in their design process as mathematical relationships for different models and their comparison has never been reported earlier in literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化效率的感应环节数学建模
通过感应线圈的射频经皮环的优化设计是一个艰巨的设计过程,需要建立复杂的数学模型来寻找优化的设计参数。本文提出了一个广义模型,该模型包含了所有可能的电压驱动电路实现,并在链路效率和电压增益的基础上进行了比较。推导了广义电压驱动模型和等效电路拓扑的数学表达式。此外,还详尽地分析了谐振阻抗等参数对最终关系的影响。优化是设计医疗植入物电感链路的关键方面,因为该链路实际上是一个相互耦合相对较低的空芯变压器。因此,为了使增益最大化,提高链路效率,有必要根据优化后的参数对链路进行设计。分析的目的是为了方便设计师在他们的设计过程中,因为不同模型的数学关系和他们的比较从未在文献中报道过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Algorithm optimization of I/O scales and parameters for FLIC in servomotor control Application and evaluation of high power Zigbee based wireless sensor network in water irrigation control monitoring system Efficiency performance analysis of Series Loaded Resonant converter Parallel distributed compensation based robust fuzzy control A new Shifted Scaled LS channel estimator for Rician flat fading MIMO channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1