S. Bergsma, Timothy J. Zeyl, Arik Senderovich, J. Christopher Beck
{"title":"Generating Complex, Realistic Cloud Workloads using Recurrent Neural Networks","authors":"S. Bergsma, Timothy J. Zeyl, Arik Senderovich, J. Christopher Beck","doi":"10.1145/3477132.3483590","DOIUrl":null,"url":null,"abstract":"Decision-making in large-scale compute clouds relies on accurate workload modeling. Unfortunately, prior models have proven insufficient in capturing the complex correlations in real cloud workloads. We introduce the first model of large-scale cloud workloads that captures long-range inter-job correlations in arrival rates, resource requirements, and lifetimes. Our approach models workload as a three-stage generative process, with separate models for: (1) the number of batch arrivals over time, (2) the sequence of requested resources, and (3) the sequence of lifetimes. Our lifetime model is a novel extension of recent work in neural survival prediction. It represents and exploits inter-job correlations using a recurrent neural network. We validate our approach by showing it is able to accurately generate the production virtual machine workload of two real-world cloud providers.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477132.3483590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 12
Abstract
Decision-making in large-scale compute clouds relies on accurate workload modeling. Unfortunately, prior models have proven insufficient in capturing the complex correlations in real cloud workloads. We introduce the first model of large-scale cloud workloads that captures long-range inter-job correlations in arrival rates, resource requirements, and lifetimes. Our approach models workload as a three-stage generative process, with separate models for: (1) the number of batch arrivals over time, (2) the sequence of requested resources, and (3) the sequence of lifetimes. Our lifetime model is a novel extension of recent work in neural survival prediction. It represents and exploits inter-job correlations using a recurrent neural network. We validate our approach by showing it is able to accurately generate the production virtual machine workload of two real-world cloud providers.
期刊介绍:
Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.