Shocks propagate in a 2D dusty plasma with less attenuation than due to gas friction alone

A. Kananovich, John Goree
{"title":"Shocks propagate in a 2D dusty plasma with less attenuation than due to gas friction alone","authors":"A. Kananovich, John Goree","doi":"10.1063/5.0016504","DOIUrl":null,"url":null,"abstract":"In a dusty plasma, an impulsively generated shock, i.e., blast wave, was observed to decay less than would be expected due to gas friction alone. In the experiment, a single layer of microparticles was levitated in a radio-frequency glow-discharge plasma. In this layer, the microparticles were self-organized as a 2D solid-like strongly coupled plasma, which was perturbed by the piston-like mechanical movement of a wire. To excite a blast wave, the wire's motion was abruptly stopped, so that the input of mechanical energy ceased at a known time. It was seen that, as it propagated across the layer, the blast wave's amplitude persisted with little decay. This result extends similar findings, in previous experiments with 3D microparticle clouds, to the case of 2D clouds. In our cloud, out-of-plane displacements were observed, lending support to the possibility that an instability, driven by wakes in the ion flow, provides energy that sustains the blast wave's amplitude, despite the presence of gas damping.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0016504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In a dusty plasma, an impulsively generated shock, i.e., blast wave, was observed to decay less than would be expected due to gas friction alone. In the experiment, a single layer of microparticles was levitated in a radio-frequency glow-discharge plasma. In this layer, the microparticles were self-organized as a 2D solid-like strongly coupled plasma, which was perturbed by the piston-like mechanical movement of a wire. To excite a blast wave, the wire's motion was abruptly stopped, so that the input of mechanical energy ceased at a known time. It was seen that, as it propagated across the layer, the blast wave's amplitude persisted with little decay. This result extends similar findings, in previous experiments with 3D microparticle clouds, to the case of 2D clouds. In our cloud, out-of-plane displacements were observed, lending support to the possibility that an instability, driven by wakes in the ion flow, provides energy that sustains the blast wave's amplitude, despite the presence of gas damping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冲击在二维尘埃等离子体中传播,其衰减比单独由气体摩擦引起的衰减要小
在尘埃等离子体中,脉冲产生的激波,即爆炸波,被观察到比仅由气体摩擦引起的预期衰减要小。在实验中,单层微粒悬浮在射频辉光放电等离子体中。在该层中,微粒子自组织为二维固体状强耦合等离子体,并受到类似活塞的金属丝机械运动的扰动。为了激发爆炸波,导线的运动突然停止,因此机械能的输入在一个已知的时间停止。可以看到,当冲击波在这一层传播时,它的振幅持续存在,几乎没有衰减。这一结果将之前在3D微粒云实验中的类似发现扩展到2D云的情况。在我们的云中,观察到面外位移,这支持了一种可能性,即由离子流尾迹驱动的不稳定性,尽管存在气体阻尼,但仍提供了维持爆炸波振幅的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetic simulation of electron cyclotron resonance assisted gas breakdown in split-biased waveguides for ITER collective Thomson scattering diagnostic Topological phases, topological phase transition, and bulk-edge correspondence of magnetized cold plasmas Non-Maxwellianity of electron distributions near Earth's magnetopause Theory of Plasma-Cascade Instability Ion cyclotron parametric turbulence and anomalous convective transport of the inhomogeneous plasma in front of the fast wave antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1