{"title":"Structural, morphological properties and phase stabilisation criteria of the calcia-zirconia system","authors":"Ankit Kumar, P. Kumar, A. S. Dhaliwal","doi":"10.1080/17436753.2021.1978266","DOIUrl":null,"url":null,"abstract":"ABSTRACT The phase evolution studies of zirconia, with 4–16 mol-% doping of calcium, have been carried out after sintering the pellets at 1400°C. From the X-ray diffractometer patterns, it is evident that the zirconia exists only in the monoclinic phase. However, Rietveld refinement of calcium-doped zirconia revealed the stabilisation in the monoclinic and cubic phases. With increasing calcium doping, the development of the cubic phase in zirconia is seen and at 16 mol-% doping of calcium, almost fully stabilised cubic phase of zirconia (∼97%) is achieved. The microstructure and elemental analyses of the sintered pellets are done using a field-emission scanning electron microscopy and energy-dispersive spectroscopy, respectively. Raman spectroscopic studies validate the findings of XRD. It is expected that the present study on calcium-doped zirconia opened a new channel for its potential applications in new technology such as oxygen sensors and solid electrolyte.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":"86 1","pages":"307 - 318"},"PeriodicalIF":1.3000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17436753.2021.1978266","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT The phase evolution studies of zirconia, with 4–16 mol-% doping of calcium, have been carried out after sintering the pellets at 1400°C. From the X-ray diffractometer patterns, it is evident that the zirconia exists only in the monoclinic phase. However, Rietveld refinement of calcium-doped zirconia revealed the stabilisation in the monoclinic and cubic phases. With increasing calcium doping, the development of the cubic phase in zirconia is seen and at 16 mol-% doping of calcium, almost fully stabilised cubic phase of zirconia (∼97%) is achieved. The microstructure and elemental analyses of the sintered pellets are done using a field-emission scanning electron microscopy and energy-dispersive spectroscopy, respectively. Raman spectroscopic studies validate the findings of XRD. It is expected that the present study on calcium-doped zirconia opened a new channel for its potential applications in new technology such as oxygen sensors and solid electrolyte.
期刊介绍:
Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.