Cardiomyocyte contractile force changes in response to chemical environments

Jin You, Hyowon Moon, B. Lee, Ju-young Jin, Z. Chang, J. F. Suh, Jinseok Kim, Jungyul Park, Y. Hwang
{"title":"Cardiomyocyte contractile force changes in response to chemical environments","authors":"Jin You, Hyowon Moon, B. Lee, Ju-young Jin, Z. Chang, J. F. Suh, Jinseok Kim, Jungyul Park, Y. Hwang","doi":"10.1109/NEMS.2014.6908796","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrate that drug treatments change cardiomyocyte contractile force in vitro. Contractile force was determined by bending deflection of the cantilever end. We quantified the effect of Digoxin, Isoproterenol, and BayK8644, drugs that increase contractile force, on cardiomyocyte contractile forces when grown on the grooved cantilever. We also investigated the effect of Verapamil, which decreases contractile force. We applied Digoxin, Isoproterenol, and BayK8644 on day 8, and Verapamil on day 5. Digoxin, Isoproterenol, and BayK8644 increased cardiomyocyte contractile forces by 19.31%, 9.75%, and 23.81%, respectively. Verapamil decreased the contractile force by 48.06%. In summary, we monitored bending movement with cantilever sensors and concluded that cardiomyocyte contractile force changes in response to various drug treatments.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"18 1","pages":"225-228"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we demonstrate that drug treatments change cardiomyocyte contractile force in vitro. Contractile force was determined by bending deflection of the cantilever end. We quantified the effect of Digoxin, Isoproterenol, and BayK8644, drugs that increase contractile force, on cardiomyocyte contractile forces when grown on the grooved cantilever. We also investigated the effect of Verapamil, which decreases contractile force. We applied Digoxin, Isoproterenol, and BayK8644 on day 8, and Verapamil on day 5. Digoxin, Isoproterenol, and BayK8644 increased cardiomyocyte contractile forces by 19.31%, 9.75%, and 23.81%, respectively. Verapamil decreased the contractile force by 48.06%. In summary, we monitored bending movement with cantilever sensors and concluded that cardiomyocyte contractile force changes in response to various drug treatments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心肌细胞收缩力随化学环境的变化而变化
在这项研究中,我们证明了药物治疗在体外改变心肌细胞的收缩力。收缩力由悬臂端弯曲挠度决定。我们量化了地高辛、异丙肾上腺素和BayK8644这些增加收缩力的药物在凹槽悬臂上生长时对心肌细胞收缩力的影响。我们还研究了维拉帕米降低收缩力的作用。第8天应用地高辛、异丙肾上腺素和BayK8644,第5天应用维拉帕米。地高辛、异丙肾上腺素和BayK8644分别使心肌细胞收缩力增加19.31%、9.75%和23.81%。维拉帕米使收缩力降低48.06%。总之,我们用悬臂式传感器监测弯曲运动,并得出结论,心肌细胞收缩力随各种药物治疗而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large scale and high yield assembly of SWNTs by sacrificial electrode method Localized two-step galvanic replacement of a tip apex modification for field sensitive scanning probe microscopy Development of a novel bidirectional electrothermal actuator and its application to RF MEMS switch Nanorobotic end-effectors: Design, fabrication, and in situ characterization Quantum cloakings hide electronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1