Forecasting failure rate of water pipes

M. Kutyłowska
{"title":"Forecasting failure rate of water pipes","authors":"M. Kutyłowska","doi":"10.2166/WS.2018.078","DOIUrl":null,"url":null,"abstract":"This paper presents the results of failure rate prediction by means of support vector machines (SVM) – a non-parametric regression method. A hyperplane is used to divide the whole area in such a way that objects of different affiliation are separated from one another. The number of support vector determines the complexity of the relations between dependent and independent variables. The calculations were performed using Statistical 12.0. Operational data (provided by the Water Utility) for one selected zone of the water supply system for the period 2008–2014 were used for forecasting. The whole data set (in which data on distribution pipes were distinguished from those on house connections) for the years 2008–2014 was randomly divided into two subsets: a training subset – 75% (5 years) and a testing subset – 25% (2 years). Dependent variables ( λ r for the distribution pipes and λ p for the house connections) were forecasted using independent variables (the total length – L r and L p and number of failures – N r and N p of the distribution pipes and the house connections, respectively). Four kinds of kernel functions: linear, polynomial, sigmoidal and radial basis functions were applied. The SVM model based on the linear kernel function was found to be optimal for predicting the failure rate of each kind of water conduit. This model9s maximum relative error of predicting failure rates λ r and λ p during the testing stage amounted to about 4% and 14%, respectively. The average experimental failure rates in the whole analysed period amounted to 0.18, 0.44, 0.17 and 0.24 fail./(km·year) for the distribution pipes, the house connections and the distribution pipes made of respectively PVC and cast iron.","PeriodicalId":23573,"journal":{"name":"Water Science & Technology: Water Supply","volume":"29 1","pages":"264-273"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology: Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WS.2018.078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents the results of failure rate prediction by means of support vector machines (SVM) – a non-parametric regression method. A hyperplane is used to divide the whole area in such a way that objects of different affiliation are separated from one another. The number of support vector determines the complexity of the relations between dependent and independent variables. The calculations were performed using Statistical 12.0. Operational data (provided by the Water Utility) for one selected zone of the water supply system for the period 2008–2014 were used for forecasting. The whole data set (in which data on distribution pipes were distinguished from those on house connections) for the years 2008–2014 was randomly divided into two subsets: a training subset – 75% (5 years) and a testing subset – 25% (2 years). Dependent variables ( λ r for the distribution pipes and λ p for the house connections) were forecasted using independent variables (the total length – L r and L p and number of failures – N r and N p of the distribution pipes and the house connections, respectively). Four kinds of kernel functions: linear, polynomial, sigmoidal and radial basis functions were applied. The SVM model based on the linear kernel function was found to be optimal for predicting the failure rate of each kind of water conduit. This model9s maximum relative error of predicting failure rates λ r and λ p during the testing stage amounted to about 4% and 14%, respectively. The average experimental failure rates in the whole analysed period amounted to 0.18, 0.44, 0.17 and 0.24 fail./(km·year) for the distribution pipes, the house connections and the distribution pipes made of respectively PVC and cast iron.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测水管故障率
本文介绍了一种非参数回归方法——支持向量机(SVM)的故障率预测结果。超平面用于划分整个区域,使不同隶属关系的对象彼此分离。支持向量的个数决定了因变量和自变量之间关系的复杂程度。使用Statistical 12.0进行计算。2008-2014年期间供水系统的一个选定区域的运行数据(由水务公司提供)用于预测。2008-2014年的整个数据集(其中配电管道的数据与房屋连接的数据不同)被随机分为两个子集:训练子集- 75%(5年)和测试子集- 25%(2年)。因变量(分配管道λ r和住宅连接λ p)使用自变量(分配管道和住宅连接的总长度- L r和L p以及故障数量- N r和N p)进行预测。采用了四种核函数:线性基、多项式基、s型基和径向基。基于线性核函数的支持向量机模型对各类输水管道的故障率预测效果最优。该模型在试验阶段预测故障率λ r和λ p的最大相对误差分别约为4%和14%。在整个分析期内,配水管、房屋连接件和配水管的平均试验故障率分别为0.18、0.44、0.17和0.24次/(km·年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an optimal plan to improve irrigation efficiency using a risk-based central force algorithm Disinfection performance and synthesis conditions of the EGCG–Cu complex Selection of Real-Coded Genetic Algorithm parameters in solving simulation–optimization problems for the design of water distribution networks Evaluation of the yield and photosynthetic parameters of corn by some amendatory materials under deficit irrigation conditions Effects of applied nitrogen fertilizers and irrigation strategies on environmental protection and yield indices of winter wheat and barley in a Mediterranean climate region of Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1