{"title":"An implementation of fast polar codes decoder with reducing internal memory and supporting flexible code rate","authors":"Ping Luo, W. Guan, Liping Liang, Xin Qiu","doi":"10.1587/elex.18.20210503","DOIUrl":null,"url":null,"abstract":"This letter proposes a fast simplified successive-cancellation (FSSC) polar decoder architecture, supporting any code rate. With the parameter M , which is the maximum limit length of a special polar node, the authors present a novel scheme for online identification of special node in a polar code. In addition, under the parameter M , the proposed decoder has a well optimized architecture to reduce area, power and energy consumption, that due to require less internal memory using cross-layer calculation and less hardware resources for special node without pipeline technology. Synthesis and post-layout simulate results, based in TSMC 65nm CMOS technology, show that the consumption of hardware resources is reduced by 25%. The architecture and circuit techniques reduce the power to 54.9mW for an energy efficiency of 77.22 pJ/b.","PeriodicalId":13437,"journal":{"name":"IEICE Electron. Express","volume":"10 1","pages":"20210503"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Electron. Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/elex.18.20210503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This letter proposes a fast simplified successive-cancellation (FSSC) polar decoder architecture, supporting any code rate. With the parameter M , which is the maximum limit length of a special polar node, the authors present a novel scheme for online identification of special node in a polar code. In addition, under the parameter M , the proposed decoder has a well optimized architecture to reduce area, power and energy consumption, that due to require less internal memory using cross-layer calculation and less hardware resources for special node without pipeline technology. Synthesis and post-layout simulate results, based in TSMC 65nm CMOS technology, show that the consumption of hardware resources is reduced by 25%. The architecture and circuit techniques reduce the power to 54.9mW for an energy efficiency of 77.22 pJ/b.