Complex-valued support vector machines based on multi-valued neurons

Hokuto Shinoda, M. Hattori
{"title":"Complex-valued support vector machines based on multi-valued neurons","authors":"Hokuto Shinoda, M. Hattori","doi":"10.1109/ICOIACT.2018.8350666","DOIUrl":null,"url":null,"abstract":"In this paper, we propose complex-valued support vector machines (CVSVMs) which are a new type of support vector machines (SVMs) based on multi-valued neurons (MVNs). An MVN which is a type of complex-valued neurons is a component of the proposed CVSVM. The features of the proposed CVSVM are: 1) it has a multi-valued complex output; 2) it provides the generalization ability by a decision boundary with the maximal margin; 3) it can deal with non-linear classification by using a kernel function. Experimental results for some famous benchmark problems show the effectiveness of the proposed CVSVM.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"17 1","pages":"208-213"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose complex-valued support vector machines (CVSVMs) which are a new type of support vector machines (SVMs) based on multi-valued neurons (MVNs). An MVN which is a type of complex-valued neurons is a component of the proposed CVSVM. The features of the proposed CVSVM are: 1) it has a multi-valued complex output; 2) it provides the generalization ability by a decision boundary with the maximal margin; 3) it can deal with non-linear classification by using a kernel function. Experimental results for some famous benchmark problems show the effectiveness of the proposed CVSVM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多值神经元的复值支持向量机
本文提出了复值支持向量机(CVSVMs),它是一种基于多值神经元的新型支持向量机。MVN是一种复值神经元,是所提出的CVSVM的一个组成部分。所提出的CVSVM具有以下特点:1)具有多值复输出;2)通过边界最大的决策边界提供泛化能力;3)利用核函数处理非线性分类。对一些著名基准问题的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Normalization and Database Design for Joglosemar Tourism Management of fault tolerance and traffic congestion in cloud data center Development of smart public transportation system in Jakarta city based on integrated IoT platform Improving the quality of enterprise IT goals using COBIT 5 prioritization approach Data mining technique with cluster anaysis use K-means algorithm for LQ45 index on Indonesia stock exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1