Feature Selection using Relative Wavelet Energy for Brain-Computer Interface Design

Haibin Zhao, Wang Xu, Wang Hong
{"title":"Feature Selection using Relative Wavelet Energy for Brain-Computer Interface Design","authors":"Haibin Zhao, Wang Xu, Wang Hong","doi":"10.1109/ICBBE.2008.687","DOIUrl":null,"url":null,"abstract":"The critical issues in brain-computer interface (BCI) research is how to translate a person's intention into brain signals for controlling computer program or wheelchair. In this paper, we used a new method: relative wavelet energy (RWE) for feature selection in BCIs design and linear discriminant analysis (LDA) and support vector machine (SVM) were utilized to classify the pattern of left and right hand movement imagery. Its performance was evaluated by mutual information (MI) using the data set Mb of BCI Competition III. This technology provides another useful way to EEG feature selection in BCIs research.","PeriodicalId":6399,"journal":{"name":"2008 2nd International Conference on Bioinformatics and Biomedical Engineering","volume":"33 1","pages":"1434-1437"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 2nd International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2008.687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The critical issues in brain-computer interface (BCI) research is how to translate a person's intention into brain signals for controlling computer program or wheelchair. In this paper, we used a new method: relative wavelet energy (RWE) for feature selection in BCIs design and linear discriminant analysis (LDA) and support vector machine (SVM) were utilized to classify the pattern of left and right hand movement imagery. Its performance was evaluated by mutual information (MI) using the data set Mb of BCI Competition III. This technology provides another useful way to EEG feature selection in BCIs research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相对小波能量的脑机接口设计特征选择
脑机接口(BCI)研究的关键问题是如何将人的意图转化为控制计算机程序或轮椅的脑信号。本文将相对小波能量(RWE)用于脑机接口设计中的特征选择,并利用线性判别分析(LDA)和支持向量机(SVM)对左手和右手运动图像的模式进行分类。利用BCI Competition III的数据集Mb,通过互信息(MI)对其性能进行评价。该技术为脑机接口研究提供了另一种有用的脑电信号特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on the Apoptosis Effect Induced by Isothiocyanates in Broccoli on Human Gastric Adenoma Cells (SGC-7901) A Hemodynamics Minimal Model for the Cerebral Circulation of Willis Based on Graph Theory Yet Another Scenario of Pattern Formation: Interpretation of Position Information Temporal Changes in Landscape of Zhalong Wetland Study on Improvement of Pollutants Removal Efficiency by Backside Aeration in Wavy Subsurface-Flow Constructed Wetland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1