Study on thermal decomposition and enrichment quality of coal from Mogoin gol deposit in Mongolia

D. Batkhishig, E. Shagjjav, S. Batbileg, A. Ankhtuya, B. Purevsuren
{"title":"Study on thermal decomposition and enrichment quality of coal from Mogoin gol deposit in Mongolia","authors":"D. Batkhishig, E. Shagjjav, S. Batbileg, A. Ankhtuya, B. Purevsuren","doi":"10.21285/2227-2925-2022-12-3-462-470","DOIUrl":null,"url":null,"abstract":"The main purpose of this study is to investigate the thermal stability and the mechanism of thermal decomposition of Mogoin gol coal, the possibility of liquefaction by pyrolysis and thermolysis, and the possibility of enriching by heavy liquids to reduce the mineral content of coal and improve its quality. Under this purpose, the Mogoin gol coal was characterized by proximate and ultimate analysis, thermogravimetry, and investigated its thermal decomposition (thermolysis and pyrolysis). Thermogravimetric analysis was performed using Japanese HITACHI TG/DTA7300 instrument and pyrolysis investigation was carried out at different heating temperatures 200–700 °C with constant heating rate 20 °C/min for 80 min. On the basis of proximate and elemental analysis results, it has been indicated that the Mogoin gol coal is high-rank coking coal. The pyrolysis of Mogoin gol coal was studied by SNOL furnace at different heating temperatures and obtained from pyrolysis products such as hard residue, tar, pyrolytic water, and gas. From pyrolysis, the yield of pyrolysis tar (6.28 %) was highest at 700 °C. The experiment of thermal decomposition (thermolysis) was carried out in air closed autoclave at 350–450 °C and using hydrogen donor solvent (tetraline) with different mass ratios of coal and solvent (1:1.75; 1:1.5). In the thermolysis experiment, the yield of liquid product is highest with the coal-solvent ratio of 1: 1.5 at 450 °C.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2227-2925-2022-12-3-462-470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this study is to investigate the thermal stability and the mechanism of thermal decomposition of Mogoin gol coal, the possibility of liquefaction by pyrolysis and thermolysis, and the possibility of enriching by heavy liquids to reduce the mineral content of coal and improve its quality. Under this purpose, the Mogoin gol coal was characterized by proximate and ultimate analysis, thermogravimetry, and investigated its thermal decomposition (thermolysis and pyrolysis). Thermogravimetric analysis was performed using Japanese HITACHI TG/DTA7300 instrument and pyrolysis investigation was carried out at different heating temperatures 200–700 °C with constant heating rate 20 °C/min for 80 min. On the basis of proximate and elemental analysis results, it has been indicated that the Mogoin gol coal is high-rank coking coal. The pyrolysis of Mogoin gol coal was studied by SNOL furnace at different heating temperatures and obtained from pyrolysis products such as hard residue, tar, pyrolytic water, and gas. From pyrolysis, the yield of pyrolysis tar (6.28 %) was highest at 700 °C. The experiment of thermal decomposition (thermolysis) was carried out in air closed autoclave at 350–450 °C and using hydrogen donor solvent (tetraline) with different mass ratios of coal and solvent (1:1.75; 1:1.5). In the thermolysis experiment, the yield of liquid product is highest with the coal-solvent ratio of 1: 1.5 at 450 °C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒙古Mogoin金矿床煤的热分解及富集品质研究
本研究的主要目的是研究Mogoin金煤的热稳定性和热分解机理,热解和热裂解液化的可能性,重液富集降低煤的矿物含量,提高煤的质量的可能性。为此,对Mogoin金煤进行了近似分析和极限分析、热重分析,并对其热分解(热裂解和热解)进行了研究。采用日本日立TG/DTA7300热重仪进行热重分析,在200 ~ 700℃不同加热温度下,以20℃/min等速加热80 min,进行热解研究。根据近似分析和元素分析结果,表明Mogoin金煤为高阶炼焦煤。采用SNOL炉对Mogoin金煤在不同加热温度下的热解过程进行了研究,热解产物为硬渣、焦油、热解水和气体。热解温度为700℃时,热解焦油收率最高,为6.28%。在350 ~ 450℃的空气密闭高压釜中,采用不同煤与溶剂质量比(1:1.75;1:1.5)。在450℃的热解实验中,当煤与溶剂的比为1:1 .5时,液相产物得率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biochemical composition of zoned apple varieties growing in different agrocenoses Novel proton-conducting materials based on a polyethylene terephthalate track-etched membrane modified with an N, P-containing ionic liquid Selection of herbaceous cellulose-containing raw materials for biotechnological processing Biochemical composition of ciders from various raw materials Growth characteristics of lactic acid-producing strains using glucose syrup as a carbon source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1