{"title":"Tooth root crack detection of planet gear in industrial robot RV reducer","authors":"Yunhai Yan, Yu Guo, Xiaoqin Liu","doi":"10.1177/00202940231180619","DOIUrl":null,"url":null,"abstract":"The windowed synchronous averaging (WSA) is widely utilized for planetary structures. However, it cannot be applied for the fault detection of the planetary structure in the industrial robot rotate vector (RV) reducer. The robot usually works within a specified angle range, which causes the RV reducer rotates incompletely. To address this issue, an angle compensation local synchronous fitting scheme is proposed. To detect the localized planet gear fault in the RV reducer, the observed vibration is equi-angle resampled. And the synchronous interference contained in the resampled vibration is constructed and removed according to the angle compensation strategy. The residual data is used to construct the synthetic vibration of the planet gear. Then, the fault feature of the planet gear can be detected. Experiments on the RV reducer test rig under the robot running conditions support the effectiveness of the proposed scheme positively.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231180619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The windowed synchronous averaging (WSA) is widely utilized for planetary structures. However, it cannot be applied for the fault detection of the planetary structure in the industrial robot rotate vector (RV) reducer. The robot usually works within a specified angle range, which causes the RV reducer rotates incompletely. To address this issue, an angle compensation local synchronous fitting scheme is proposed. To detect the localized planet gear fault in the RV reducer, the observed vibration is equi-angle resampled. And the synchronous interference contained in the resampled vibration is constructed and removed according to the angle compensation strategy. The residual data is used to construct the synthetic vibration of the planet gear. Then, the fault feature of the planet gear can be detected. Experiments on the RV reducer test rig under the robot running conditions support the effectiveness of the proposed scheme positively.