{"title":"Respiratory events screening using consumer smartwatches","authors":"Illia Fedorin, Kostyantyn Slyusarenko, Margaryta Nastenko","doi":"10.1145/3410530.3414399","DOIUrl":null,"url":null,"abstract":"Respiratory related events (RE) during nocturnal sleep disturb the natural physiological pattern of sleep. This events may include all types of apnea and hypopnea, respiratory-event-related arousals and snoring. The particular importance of breath analysis is currently associated with the COVID-19 pandemic. The proposed algorithm is a deep learning model with long short-term memory cells for RE detection for each 1 minute epoch during nocturnal sleep. Our approach provides the basis for a smartwatch based respiratory-related sleep pattern analysis (accuracy of epoch-by-epoch classification is greater than 80 %), can be applied for a potential risk of respiratory-related diseases screening (mean absolute error of AHI estimation is about 6.5 events/h on the test set, which includes participants with all types of apnea severity; two class screening accuracy (AHI threshold is 15 events/h) is greater than 90 %).","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Respiratory related events (RE) during nocturnal sleep disturb the natural physiological pattern of sleep. This events may include all types of apnea and hypopnea, respiratory-event-related arousals and snoring. The particular importance of breath analysis is currently associated with the COVID-19 pandemic. The proposed algorithm is a deep learning model with long short-term memory cells for RE detection for each 1 minute epoch during nocturnal sleep. Our approach provides the basis for a smartwatch based respiratory-related sleep pattern analysis (accuracy of epoch-by-epoch classification is greater than 80 %), can be applied for a potential risk of respiratory-related diseases screening (mean absolute error of AHI estimation is about 6.5 events/h on the test set, which includes participants with all types of apnea severity; two class screening accuracy (AHI threshold is 15 events/h) is greater than 90 %).