Intelligent DSA-assisted clustered IoT networks: neuromorphic computing meets genetic algorithm

Q. Fan, Jianan Bai, Hao-Hsuan Chang, Lianjun Li, Shiya Liu, Joe Huang, J. Burgess, A. Berlinsky, A. Pidwerbetsky, J. Ashdown, K. Turck, Lingjia Liu
{"title":"Intelligent DSA-assisted clustered IoT networks: neuromorphic computing meets genetic algorithm","authors":"Q. Fan, Jianan Bai, Hao-Hsuan Chang, Lianjun Li, Shiya Liu, Joe Huang, J. Burgess, A. Berlinsky, A. Pidwerbetsky, J. Ashdown, K. Turck, Lingjia Liu","doi":"10.1145/3411295.3411320","DOIUrl":null,"url":null,"abstract":"Dynamic spectrum access (DSA) is a promising technology to increase the spectrum efficiency of Internet of Things (IoT) networks, where the traffic demand grows up dramatically recently. In this paper, an intelligent DSA-assisted IoT network is introduced, where we investigate the spectrum sensing through neuromorphic computing (NC) and spectrum access through genetic algorithm (GA)-based power allocation. To be specific, we apply the NC's unconventional computing architectures that exploit and harness the intrinsic dynamics for computation, and thus provide increased functionality with better spectrum sensing performance requiring significantly lower size, weight, and power budgets. Furthermore, we design a GA algorithm to intelligently search the desirable transmission power for multiple IoT devices sharing the same channel to enhance the capacity of the highly dynamic DSA-assisted IoT network. Extensive simulation results have demonstrated the benefits of NC and GA compared to other baseline algorithms and methodologies.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic spectrum access (DSA) is a promising technology to increase the spectrum efficiency of Internet of Things (IoT) networks, where the traffic demand grows up dramatically recently. In this paper, an intelligent DSA-assisted IoT network is introduced, where we investigate the spectrum sensing through neuromorphic computing (NC) and spectrum access through genetic algorithm (GA)-based power allocation. To be specific, we apply the NC's unconventional computing architectures that exploit and harness the intrinsic dynamics for computation, and thus provide increased functionality with better spectrum sensing performance requiring significantly lower size, weight, and power budgets. Furthermore, we design a GA algorithm to intelligently search the desirable transmission power for multiple IoT devices sharing the same channel to enhance the capacity of the highly dynamic DSA-assisted IoT network. Extensive simulation results have demonstrated the benefits of NC and GA compared to other baseline algorithms and methodologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能dsa辅助的集群物联网:神经形态计算与遗传算法
动态频谱接入(DSA)是一种很有前途的技术,可以提高物联网网络的频谱效率,近年来,物联网网络的流量需求急剧增长。本文介绍了一种基于dsa的智能物联网网络,研究了基于神经形态计算(NC)的频谱感知和基于遗传算法(GA)的功率分配的频谱接入。具体而言,我们采用NC的非常规计算架构,利用和利用计算的内在动态,从而提供更好的频谱传感性能,增加功能,需要显着降低尺寸,重量和功耗预算。此外,我们设计了一种遗传算法来智能搜索共享同一信道的多个物联网设备所需的传输功率,以增强高动态dsa辅助物联网网络的容量。大量的仿真结果表明,与其他基线算法和方法相比,NC和GA的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward localization in terahertz-operating energy harvesting software-defined metamaterials: context analysis MEHLISSA A molecular communications framework for understanding the floral transition Powering next-generation industry 4.0 by a self-learning and low-power neuromorphic system A testbed and simulation framework for air-based molecular communication using fluorescein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1