Wan Muhammad Luqman Sazali, Sahriza Salwani Md Shah, M. Z. Kashim, B. Kantaatmadja, L. Knuefing, B. Young
{"title":"The Use of Digital Core Analysis in Understanding the Effects of CO2 Aging to Carbonates Samples","authors":"Wan Muhammad Luqman Sazali, Sahriza Salwani Md Shah, M. Z. Kashim, B. Kantaatmadja, L. Knuefing, B. Young","doi":"10.2118/195074-MS","DOIUrl":null,"url":null,"abstract":"\n PETRONAS is interested in monetizing X Field, a high CO2 carbonate gas field located in East Malaysian waters. Because of its location (more than 200 km from shore) and the preferable geological formation of the field, reinjection of produced CO2 back into the field's aquifer has been considered as part of the field development plan. To ensure feasibility, the PETRONAS R&D team has conducted a set of laboratory analyses to observe the impact of CO2 on the carbonate formations, through combining the use of static CO2 batch reaction experiments with advanced helical digital core analysis techniques. The analysis of two representative samples, from the aquifer zone is presented here. The initial state of the samples was determined through the use of theoretically exact helical micro computed tomography (microCT) techniques. The images were processed digitally to determine the porosity and calibrated with RCA to ensure the reliability of digital core analysis results. After scanning, both plugs were saturated with synthetic brine with similar composition as the fields' formation brine and aged with supercritical CO2 at reservoir temperature and pressure for 45 days. After 45 days, the aged core plugs underwent post reaction analysis using micro-CT scan and image processing software. Based on macroscopic observation, the core plugs showed no changes after aging with supercritical CO2 at high pressure and high temperature (HPHT) as per reservoir condition. However, analysing the high resolution micro CT images, the team was able to determine the changes in porosity before and after CO2 aging, which are around 1%.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195074-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
PETRONAS is interested in monetizing X Field, a high CO2 carbonate gas field located in East Malaysian waters. Because of its location (more than 200 km from shore) and the preferable geological formation of the field, reinjection of produced CO2 back into the field's aquifer has been considered as part of the field development plan. To ensure feasibility, the PETRONAS R&D team has conducted a set of laboratory analyses to observe the impact of CO2 on the carbonate formations, through combining the use of static CO2 batch reaction experiments with advanced helical digital core analysis techniques. The analysis of two representative samples, from the aquifer zone is presented here. The initial state of the samples was determined through the use of theoretically exact helical micro computed tomography (microCT) techniques. The images were processed digitally to determine the porosity and calibrated with RCA to ensure the reliability of digital core analysis results. After scanning, both plugs were saturated with synthetic brine with similar composition as the fields' formation brine and aged with supercritical CO2 at reservoir temperature and pressure for 45 days. After 45 days, the aged core plugs underwent post reaction analysis using micro-CT scan and image processing software. Based on macroscopic observation, the core plugs showed no changes after aging with supercritical CO2 at high pressure and high temperature (HPHT) as per reservoir condition. However, analysing the high resolution micro CT images, the team was able to determine the changes in porosity before and after CO2 aging, which are around 1%.