Heracles: Improving resource efficiency at scale

David Lo, Liqun Cheng, R. Govindaraju, Parthasarathy Ranganathan, C. Kozyrakis
{"title":"Heracles: Improving resource efficiency at scale","authors":"David Lo, Liqun Cheng, R. Govindaraju, Parthasarathy Ranganathan, C. Kozyrakis","doi":"10.1145/2749469.2749475","DOIUrl":null,"url":null,"abstract":"User-facing, latency-sensitive services, such as websearch, underutilize their computing resources during daily periods of low traffic. Reusing those resources for other tasks is rarely done in production services since the contention for shared resources can cause latency spikes that violate the service-level objectives of latency-sensitive tasks. The resulting under-utilization hurts both the affordability and energy-efficiency of large-scale datacenters. With technology scaling slowing down, it becomes important to address this opportunity. We present Heracles, a feedback-based controller that enables the safe colocation of best-effort tasks alongside a latency-critical service. Heracles dynamically manages multiple hardware and software isolation mechanisms, such as CPU, memory, and network isolation, to ensure that the latency-sensitive job meets latency targets while maximizing the resources given to best-effort tasks. We evaluate Heracles using production latency-critical and batch workloads from Google and demonstrate average server utilizations of 90% without latency violations across all the load and colocation scenarios that we evaluated.","PeriodicalId":6878,"journal":{"name":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","volume":"27 1","pages":"450-462"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"496","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2749469.2749475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 496

Abstract

User-facing, latency-sensitive services, such as websearch, underutilize their computing resources during daily periods of low traffic. Reusing those resources for other tasks is rarely done in production services since the contention for shared resources can cause latency spikes that violate the service-level objectives of latency-sensitive tasks. The resulting under-utilization hurts both the affordability and energy-efficiency of large-scale datacenters. With technology scaling slowing down, it becomes important to address this opportunity. We present Heracles, a feedback-based controller that enables the safe colocation of best-effort tasks alongside a latency-critical service. Heracles dynamically manages multiple hardware and software isolation mechanisms, such as CPU, memory, and network isolation, to ensure that the latency-sensitive job meets latency targets while maximizing the resources given to best-effort tasks. We evaluate Heracles using production latency-critical and batch workloads from Google and demonstrate average server utilizations of 90% without latency violations across all the load and colocation scenarios that we evaluated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
赫拉克勒斯:大规模提高资源效率
面向用户的、对延迟敏感的服务(如websearch)在日常低流量期间未充分利用其计算资源。在生产服务中很少为其他任务重用这些资源,因为对共享资源的争用可能导致延迟峰值,从而违反对延迟敏感的任务的服务级目标。由此导致的利用率不足损害了大型数据中心的可负担性和能源效率。随着技术规模的放缓,抓住这个机会变得非常重要。我们介绍了Heracles,这是一种基于反馈的控制器,可以在延迟关键服务的同时安全地配置最努力的任务。Heracles动态地管理多种硬件和软件隔离机制(如CPU、内存和网络隔离),以确保对延迟敏感的作业满足延迟目标,同时最大限度地利用分配给“最佳努力”任务的资源。我们使用b谷歌的生产延迟关键型和批处理工作负载来评估Heracles,并演示了在我们评估的所有负载和托管场景中,平均服务器利用率为90%,没有延迟违规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redundant Memory Mappings for fast access to large memories Multiple Clone Row DRAM: A low latency and area optimized DRAM Manycore Network Interfaces for in-memory rack-scale computing Coherence protocol for transparent management of scratchpad memories in shared memory manycore architectures ShiDianNao: Shifting vision processing closer to the sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1