Teaching Neural Module Networks to Do Arithmetic

Jiayi Chen, Xiao-Yu Guo, Yuan-Fang Li, Gholamreza Haffari
{"title":"Teaching Neural Module Networks to Do Arithmetic","authors":"Jiayi Chen, Xiao-Yu Guo, Yuan-Fang Li, Gholamreza Haffari","doi":"10.48550/arXiv.2210.02703","DOIUrl":null,"url":null,"abstract":"Answering complex questions that require multi-step multi-type reasoning over raw text is challenging, especially when conducting numerical reasoning. Neural Module Networks (NMNs), follow the programmer-interpreter framework and design trainable modules to learn different reasoning skills. However, NMNs only have limited reasoning abilities, and lack numerical reasoning capability. We upgrade NMNs by: (a) bridging the gap between its interpreter and the complex questions; (b) introducing addition and subtraction modules that perform numerical reasoning over numbers. On a subset of DROP, experimental results show that our proposed methods enhance NMNs’ numerical reasoning skills by 17.7% improvement of F1 score and significantly outperform previous state-of-the-art models.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"24 1","pages":"1502-1510"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.02703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Answering complex questions that require multi-step multi-type reasoning over raw text is challenging, especially when conducting numerical reasoning. Neural Module Networks (NMNs), follow the programmer-interpreter framework and design trainable modules to learn different reasoning skills. However, NMNs only have limited reasoning abilities, and lack numerical reasoning capability. We upgrade NMNs by: (a) bridging the gap between its interpreter and the complex questions; (b) introducing addition and subtraction modules that perform numerical reasoning over numbers. On a subset of DROP, experimental results show that our proposed methods enhance NMNs’ numerical reasoning skills by 17.7% improvement of F1 score and significantly outperform previous state-of-the-art models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
教神经模块网络做算术
回答需要对原始文本进行多步骤多类型推理的复杂问题是具有挑战性的,特别是在进行数值推理时。神经模块网络(NMNs),遵循程序员-解释器框架,设计可训练的模块来学习不同的推理技能。然而,神经网络的推理能力有限,缺乏数值推理能力。我们通过以下方式升级神经网络:(a)弥合其解释器与复杂问题之间的差距;(b)引入对数字进行数值推理的加法和减法模块。在DROP的一个子集上,实验结果表明,我们提出的方法使NMNs的数值推理能力提高了17.7%,并且显著优于以前最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1