{"title":"New Mechanism and Criterion for Forming Multi-Component Solid-Solution Alloys","authors":"T. Fang","doi":"10.2139/ssrn.3855727","DOIUrl":null,"url":null,"abstract":"Abstract Some existing criteria for forming single-phase multicomponent solid-solution alloys (MCSSAs) are assessed, and a new criterion based on the topology of atomic packing is propounded. A new mechanism concerning the development of MCSSAs is posited, where the multicomponent effect in surface layer, reducing the surface free energy of nanocrystalline nucleus, plays a significant role. More reasonable interpretation regarding the phase stability of CoCrFeMnNi alloy annealed at different temperatures is provided.","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3855727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Some existing criteria for forming single-phase multicomponent solid-solution alloys (MCSSAs) are assessed, and a new criterion based on the topology of atomic packing is propounded. A new mechanism concerning the development of MCSSAs is posited, where the multicomponent effect in surface layer, reducing the surface free energy of nanocrystalline nucleus, plays a significant role. More reasonable interpretation regarding the phase stability of CoCrFeMnNi alloy annealed at different temperatures is provided.